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13.1. (Gradient fields) (4 credits)

Consider the function f : R2→ R, (x , y) 7→ x3 y−3x y . The figure below shows a contour

plot of f , that is, imagine the graph of f as a mountainous area above the plane R2 and

the drawn lines are the paths on which a hiker would not change his or her altitude.
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(a) Compute the gradient grad f (x , y) =
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Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

27.01.2022, 12:15 o’clock. https://tc.tugraz.at/main/course/view.php?id=3543

https://www.math.tugraz.at/∼mtechnau/teaching/2021-w-mams.html

https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html


(b) For at least 5 points (x , y) ∈ (−2, 2)×(−1, 1), compute the gradient grad f (x , y) and

sketch it into in the figure. The base of the arrows you draw should be anchored at

(x , y) and not (0, 0), however. The grey arrow shows what is meant for the choice

(x , y) = (−1/10, 1/10). You are not required (but encouraged!) to draw the length

of the vectors accurately, but the general direction of the vectors should be correct.

13.2. (Polar coordinates, differentiation) (4 credits)

Consider the function

f : R2 \ {~0} → R, (x , y) 7→ 2x y

(x2 + y2)2
,

as well as the well-known polar coordinate map ~P : R2→ R2, (r,ϕ) 7→ (r cosϕ, r sinϕ).

Let ~v = (1/
p

2, 1/
p

2). Compute the following quantities.

(a) ∂1 f (x , y) = and ∂2 f (x , y) = .

(b)
∂ f

∂ ~v
(x , y) = .

(c) ( f ◦ ~P)(r,ϕ) = .

(d)
∂ f

∂ r
(r,ϕ) = and

∂ f

∂ ϕ
(r,ϕ) = .

(Hint: this notation means ∂1( f ◦ ~P) and ∂2( f ◦ ~P).)

13.3. (Rotation of vector fields) (4 credits)

Consider the vector fields ~F : R3 → R3, ~x 7→ (2x1,−1, 0), and ~G : R3 → R3, ~x 7→ (x1 −
x2, x2

2
x3, x3).

(a) Compute rot ~F =
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and rot ~G =
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(b) Does there exist a function f : R3 → R such that ~F = grad f ? If not, give a quick
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justification; otherwise exhibit such an f .

(c) Does there exist a function g : R3 → R such that ~G = grad g? If not, give a quick

justification; otherwise exhibit such an f .

13.4. (Heat equation, II) (4 credits)

Provide a function u: [0, 1]×R≥0→ R with the three following properties:

• u solves the heat equation from exercise 13.4 on (0, 1)×R>0.

• u(t, 0) = 0= u(t, 1) for all t ≥ 0.

• u(0, x) = sin(2πx)− 3 sin(3πx) for all x ∈ [0, 1].

(Hint: a close look at exercise 13.4 should reveal that solving this exercise does not

require any hard calculations or fancy techniques.)
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