

1. exercise sheet for Engineering Mathematics

1.1. (Partial sums of the exponential function)

For $n \in \mathbb{N}$ and real x, consider $S_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k$ and recall that $\exp(x) = \sum_{k=0}^\infty \frac{1}{k!} x^k$.

- (a) Use a calculator to compute $S_n(x)$ for all pairs (n, x) with n = 0, 1, 2, 3, 4 and x = 1, 2.
- (b) Also compute the difference $\exp(x) S_n(x)$ for the above pairs (n, x)
- **1.2.** *(Geometric series and relatives)* Suppose that *x* is a real number such that |x| < 1. From the lecture you know that

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}.$$
 (†)

(a) Differentiate both sides of (\dagger) with respect to *x* to find a closed-form expression for

$$\sum_{k=0}^{\infty} k x^k. \tag{\ddagger}$$

(You may assume that differentiation commutes with the formation of infinite series, i.e., $\frac{d}{dx} \sum_{k=0}^{\infty} \ldots = \sum_{k=0}^{\infty} \frac{d}{dx} \ldots$; this is not true in general, but when working with power series it turns out to be fine, provided one stays away from the *x* for which they diverge.)

- (b) Use the above to evaluate (‡) for x = 1/3. (If you get 15/4 for x = 3/5, then your answer to (a) is most likely correct.)
- (c) Work as in (a) to find a closed-form expression for

$$\sum_{k=0}^{\infty} (k^2 + k) x^k.$$

1.3. (Inverse functions)

Suppose that $f: [0,1] \rightarrow [2,3]$ is a bijective function. (This means that for every $y \in [2,3]$ there is one and only one $x \in [0,1]$ such that f(x) = y.) Define the inverse function f^{-1} to f to be the function $f^{-1}: [2,3] \rightarrow [0,1]$ such that $f^{-1}(f(x)) = x$. The graph G_f of f is defined as the set

$$G_f = \{(x, y) \in [0, 1] \times [2, 3] : f(x) = y\}$$

and let $G_{f^{-1}}$ be defined similarly. Show that $G_{f^{-1}}$ is obtained from G_f by reflection across the diagonal $\{(x, y) \in \mathbb{R}^2 : x = y\}$.

(Hint: you need to translate what "reflection" means into formulae and ponder a bit what $f^{-1}(f(x)) = x$ actually means.)

