1. exercise sheet for Engineering Mathematics

1.1. (Partial sums of the exponential function)

For $n \in \mathbb{N}$ and real x, consider $S_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}$ and recall that $\exp (x)=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$.

(a) Use a calculator to compute $S_{n}(x)$ for all pairs (n, x) with $n=0,1,2,3,4$ and $x=1,2$.
(b) Also compute the difference $\exp (x)-S_{n}(x)$ for the above pairs (n, x)
1.2. (Geometric series and relatives)

Suppose that x is a real number such that $|x|<1$. From the lecture you know that

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

(a) Differentiate both sides of (\dagger) with respect to x to find a closed-form expression for

$$
\sum_{k=0}^{\infty} k x^{k}
$$

(You may assume that differentiation commutes with the formation of infinite series, i.e., $\frac{d}{d x} \sum_{k=0}^{\infty} \ldots=\sum_{k=0}^{\infty} \frac{d}{d x} \ldots$; this is not true in general, but when working with power series it turns out to be fine, provided one stays away from the x for which they diverge.)
(b) Use the above to evaluate (\ddagger) for $x=1 / 3$.
(If you get $15 / 4$ for $x=3 / 5$, then your answer to (a) is most likely correct.)
(c) Work as in (a) to find a closed-form expression for

$$
\sum_{k=0}^{\infty}\left(k^{2}+k\right) x^{k} .
$$

1.3. (Inverse functions)

Suppose that $f:[0,1] \rightarrow[2,3]$ is a bijective function. (This means that for every $y \in[2,3]$ there is one and only one $x \in[0,1]$ such that $f(x)=y$.) Define the inverse function f^{-1} to f to be the function $f^{-1}:[2,3] \rightarrow[0,1]$ such that $f^{-1}(f(x))=x$. The graph G_{f} of f is defined as the set

$$
G_{f}=\{(x, y) \in[0,1] \times[2,3]: f(x)=y\}
$$

and let G_{f-1} be defined similarly. Show that $G_{f^{-1}}$ is obtained from G_{f} by reflection across the diagonal $\left\{(x, y) \in \mathbb{R}^{2}: x=y\right\}$.
(Hint: you need to translate what "reflection" means into formulae and ponder a bit what $f^{-1}(f(x))=x$ actually means.)

