Winter term 2022
Graz, 11.10.2022

2. exercise sheet for Engineering Mathematics

| | |
| :--- | :--- | :--- |
| (first name) | |
| (last name) | |
| (student id number) | |

2.1. (Differentiation)
(4 credits)
Compute the following derivatives:
(a) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x}{x}=\square$,
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x-2}{x^{2}+1}=\square$,
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \exp \left(\cos (x)^{2}\right)=\square$, ,
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin (x)=\square$.
(Hint: arcsin is the inverse function of the sine function restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.)
2.2. (Integration)

Compute the following integrals:
(a) $\int_{1}^{2}\left(x+\frac{1}{x}+\frac{1}{x^{2}}\right) \mathrm{d} x=\square$,
(b) $\int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) \mathrm{d} x=\square$,

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 18.10.2022, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html
(c) $\int_{0}^{5} x^{2} \exp (x) \mathrm{d} x=\square$.
(Please give exact values, and not approximations. For instance, do not write 0.6931 for $\log (2)$.)
Hint: All of the above exercises can be solved using the fundamental theorem of calculus. For (c) one would usually use a trick called "integration by parts". If you do not know this trick, try to find $A, B, C \in \mathbb{R}$ such that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\left(A+B x+C x^{2}\right) \exp (x)\right)=x^{2} \exp (x)$ and then apply the fundamental theorem.

