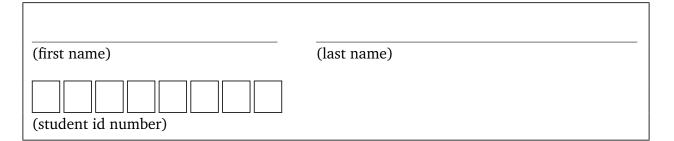


## 4. exercise sheet for Engineering Mathematics



**4.1.** *(Solving a system of linear equations)* Consider the following system of linear equations:

| (4 | 0 | 2 | 1)     |                        |   | (0) |  |
|----|---|---|--------|------------------------|---|-----|--|
| 1  | 0 | 2 | 0      | $(x_1)$                |   | 1   |  |
| 3  | 5 | 0 | 3<br>0 |                        | ! | 2   |  |
| 0  | 2 | 5 | 0      | $\left( x_{n} \right)$ |   | 4   |  |
| \4 | 5 | 2 | 3)     |                        |   | \3/ |  |

Find the correct value of n such that the above system makes sense (i.e., such that the matrix–vector product on the left hand side can be computed). Subsequently determine all solutions to the above system.

$$n =$$
 ,  $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} & & \\ & & \\ \end{pmatrix}.$ 

**4.2.** (Solving a system of linear equations) (4 credits) Find *all* solutions  $(x_1, x_2, x_3) \in \mathbb{R}^3$  to the following system of linear equations:

$$\begin{pmatrix} 1 & 0 & 2 \\ 3 & 5 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 3 \\ 3 \end{pmatrix}.$$

(4 credits)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 01.11.2022, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html

**4.3.** (Finding a matrix representation)

## (4 credits)

For each of the following linear maps  $f_{\nu}$ , determine the matrix  $A_{\nu}$  representing  $f_{\nu}$ .

- (a)  $f_1: \mathbb{R} \to \mathbb{R}, x \mapsto -3x$ .
- (b)  $f_2 \colon \mathbb{R}^4 \to \mathbb{R}^2, \ \vec{x} \mapsto (x_2 x_1, x_3).$
- (c)  $f_3: \mathbb{R}^4 \to \mathbb{R}^4, \vec{x} \mapsto (x_1 x_3, x_2, x_1, x_1 + x_3).$
- (d)  $f_4: \mathbb{R}^4 \to \mathbb{R}^4, \vec{x} \mapsto \vec{y}$ , where the vector  $\vec{y}$  is determined from  $\vec{x}$  such that the following equation is satisfied for all t

$$\frac{\mathrm{d}}{\mathrm{d}t}(x_1 + x_2t + x_3t^2 + x_4t^3) = y_1 + y_2t + y_3t^2 + y_4t^3.$$

**4.4.** *(Composition of maps)* Consider the linear maps

(4 credits)

$$f: \mathbb{R}^3 \to \mathbb{R}^2, \ \vec{v} \mapsto \begin{pmatrix} v_1 + 2v_2 + v_3 \\ 2v_2 + v_3 \end{pmatrix}, \quad \text{and} \quad g: \mathbb{R}^2 \to \mathbb{R}^3, \ \vec{w} \mapsto \begin{pmatrix} w_1 - w_2 \\ w_2/2 \\ 0 \end{pmatrix}.$$

-

٦.

Compute the following:

(a) 
$$(f \circ g)(\vec{w}) = \left( \boxed{\qquad} \right), (g \circ f)(\vec{v}) = \left( \boxed{\qquad} \right),$$

(b) the matrices A, B, C, D representing f, g,  $f \circ g$  and  $g \circ f$  respectively,

(c) the matrices *AB* and *BA*.