

5. exercise sheet for Engineering Mathematics

5.1. *(Inverting matrices)* Find the inverse matrix A^{-1} of

 $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$

(Hint: there are several ways of doing this. For example, you may use the Gauß–Jordan algorithm from § 3.6.5 of the lecture notes. Alternatively, you may use Cramer's rule, Proposition 3.2.)

5.2. (Volume of a parallelepiped) Compute the volume of the parallelepiped

$$\square \coloneqq \square (\vec{v}, \vec{w}, \vec{z}) \coloneqq \{ \lambda_1 \vec{v} + \lambda_2 \vec{w} + \lambda_3 \vec{z} : 0 \le \lambda_1, \lambda_2, \lambda_3 \le 1 \}.$$

spanned by the vectors $\vec{v} = (1/5, 1, 0)$, $\vec{w} = (1, 1/5, 0)$ and $\vec{z} = (1/2, 0, 1)$.

(Hint: you can use Cavalieri's principle, or you can simply compute an appropriate determinant.)

5.3. (Computing determinants)

Compute the determinant of each of the following matrices:

(a)
$$\begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix}$$
,
(b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 0 \end{pmatrix}$,
(c) $\begin{pmatrix} \cos(\varphi)\sin(\theta) & r\cos(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) & r\cos(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) & -r\sin(\varphi) & 0 \end{pmatrix}$ for $r, \varphi, \theta \in \mathbb{R}$.

(Hint: for (c) employ the identity $\cos(\varphi)^2 + \sin(\varphi)^2 = |\exp(i\varphi)| = 1$ from Theorem 1.3. Your final result should only depend on *r* and θ and look very simple.)