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6.1. (Solving systems of linear equations with a parameter) (4 credits)

For x ∈ R, consider the matrix Ax =

�

x − 1 2

2 x − 1

�

∈ R2×2.

(a) Find all values of x such that the system of linear equations given by Ax ~v
!
=
�

0
0

�

admits a solution ~v ∈ R2 different from the zero vector. (Hint: one can deduce from

Cramer’s rule that it suffices to consider the x such that det Ax = 0.)

(b) For each x determined above, provide a non-zero solution ~v to the above system.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

15.11.2022, 23:55 o’clock. https://tc.tugraz.at/main/course/view.php?id=4636

https://www.math.tugraz.at/∼mtechnau/teaching/2022-w-engimaths.html

https://tc.tugraz.at/main/course/view.php?id=4636
https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html


6.2. (Finding certain linear maps) (4 credits)

Find a matrix A∈ R2×2 such that the associated linear map f : R2→ R2, ~v 7→ A~v, maps the

parallelogram

= { (x , y) ∈ R2 : 0≤ 6
7
x + 2

7
y ≤ 1, 0≤ 8

7
y − 4

7
x ≤ 1 }

onto the unit square � = [0, 1]× [0, 1], i.e., f ( ) := { f (~v) : ~v ∈ }= �:

A=





















.

1

1

1

1

�

←

→
f

(Hint: it may be easier to find a matrix B ∈ R2×2 such that the associated linear map maps

� onto . One may then take A= B−1.)

6.3. (Gram determinants) (4 credits)

Consider the matrix A=

�

1

3

�

∈ R2×1 and the associated linear map f : R1→ R2, v 7→ Av.

(a) Sketch the image im f = { f (v) : v ∈ R } ⊆ R2 of f below:

−3 −2 −1 1 2 3

−2

−1

1

2

3

(b) In your above sketch, mark the part of im f that is { f (v) : 0≤ v ≤ 1 } and determine

its length.

Length of { f (v) : 0≤ v ≤ 1 }= .

(c) Compute
p

det(ATA) = and
p

det(AAT) = .

6.4. (Gram determinants) (4 credits)

Consider the matrix A=







1 −1

1 0

1 3

1 4





 ∈ R
4×2 and the vector ~b =







1

1/3

19/6

1





 ∈ R
4.

2



(a) Solve the system of linear equations ATA~x
!
= AT b for ~x = (x1, x2) ∈ R

2.

x1 = , x2 = .

(b) With your solution ~x from above, sketch the graph of the affine map f : R → R,

t 7→ x1 + x2 t, below:

−1 1 2 3 4

1

2

3

(The black points are

(−1, 1), (0, 1/3),

(3,19/6) and (4,1).)

(c) Using the function f from the previous exercise, compute

E f := (1− f (−1))2 + (1/3− f (0))2 + (19/6− f (3))2 + (1− f (4))2. (⋆)

E f = .

(Hint: the final solution may look slightly ugly, but it is roughly 3.5.)

(d) Pick a vector (y1, y2) ∈ R
2 other than ~x and compute the quantity in (⋆) with f

replaced by g : R→ R, t 7→ y1 + y2 t. Also sketch the graph of g in the figure in (b).

Eg = .

(Remark: you may consult § 3.2.6 of the lecture notes for some general context on this

exercise.)
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