GRAZ UNIVERSITY OF TECHNOLOGY INSTITUTE OF ANALYSIS AND NUMBER THEORY Marc Technau

6. exercise sheet for Engineering Mathematics

(first name)	(last name)
(student id number)	

6.1. (Solving systems of linear equations with a parameter) For $x \in \mathbb{R}$, consider the matrix $A_x = \begin{pmatrix} x-1 & 2 \\ 2 & x-1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

(4 credits)

(a) Find *all* values of x such that the system of linear equations given by $A_x \vec{v} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ admits a solution $\vec{v} \in \mathbb{R}^2$ different from the zero vector. (Hint: one can deduce from Cramer's rule that it suffices to consider the x such that $\det A_x = 0$.)

(b) For each x determined above, provide a non-zero solution \vec{v} to the above system.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 15.11.2022, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html

6.2. (Finding certain linear maps) (4 credits) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that the associated linear map $f : \mathbb{R}^2 \to \mathbb{R}^2$, $\vec{v} \mapsto A\vec{v}$, maps the parallelogram

$$\square = \{(x,y) \in \mathbb{R}^2 : 0 \le \frac{6}{7}x + \frac{2}{7}y \le 1, 0 \le \frac{8}{7}y - \frac{4}{7}x \le 1\}$$

onto the unit square $\square = [0,1] \times [0,1]$, i.e., $f(\triangle) := \{f(\vec{v}) : \vec{v} \in \triangle\} = \square$:

(Hint: it may be easier to find a matrix $B \in \mathbb{R}^{2 \times 2}$ such that the associated linear map maps \square onto \square . One may then take $A = B^{-1}$.)

6.3. (Gram determinants)

(4 credits)

Consider the matrix $A = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \in \mathbb{R}^{2 \times 1}$ and the associated linear map $f : \mathbb{R}^1 \to \mathbb{R}^2$, $v \mapsto Av$.

(a) Sketch the image im $f = \{f(v) : v \in \mathbb{R}\} \subseteq \mathbb{R}^2$ of f below:

(b) In your above sketch, mark the part of im f that is $\{f(v): 0 \le v \le 1\}$ and determine its length.

Length of
$$\{f(v): 0 \le v \le 1\} =$$

- (c) Compute $\sqrt{\det(A^{T}A)} =$ and $\sqrt{\det(AA^{T})} =$
- **6.4.** (*Gram determinants*)

(4 credits)

Consider the matrix
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 3 \\ 1 & 4 \end{pmatrix} \in \mathbb{R}^{4 \times 2}$$
 and the vector $\vec{b} = \begin{pmatrix} 1 \\ 1/3 \\ 19/6 \\ 1 \end{pmatrix} \in \mathbb{R}^4$.

(a) Solve the system of linear equations $A^{T}A\vec{x} \stackrel{!}{=} A^{T}b$ for $\vec{x} = (x_1, x_2) \in \mathbb{R}^2$.

$$x_1 = \boxed{ , \quad x_2 = \boxed{ } }$$

(b) With your solution \vec{x} from above, sketch the graph of the affine map $f: \mathbb{R} \to \mathbb{R}$, $t \mapsto x_1 + x_2 t$, below:

(c) Using the function f from the previous exercise, compute

$$\mathcal{E}_f := (1 - f(-1))^2 + (1/3 - f(0))^2 + (19/6 - f(3))^2 + (1 - f(4))^2. \tag{*}$$

$$\mathcal{E}_f = \boxed{ }$$

(Hint: the final solution may look slightly ugly, but it is roughly 3.5.)

(d) Pick a vector $(y_1, y_2) \in \mathbb{R}^2$ other than \vec{x} and compute the quantity in (\star) with f replaced by $g: \mathbb{R} \to \mathbb{R}$, $t \mapsto y_1 + y_2 t$. Also sketch the graph of g in the figure in (b).

$$\mathscr{E}_g =$$

(Remark: you may consult § 3.2.6 of the lecture notes for some general context on this exercise.)