Winter term 2022
Graz, 08.11.2022

6. exercise sheet for Engineering Mathematics

 (first name) (last name) (student id number)

6.1. (Solving systems of linear equations with a parameter)

For $x \in \mathbb{R}$, consider the matrix $A_{x}=\left(\begin{array}{cc}x-1 & 2 \\ 2 & x-1\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
(a) Find all values of x such that the system of linear equations given by $A_{x} \vec{v} \stackrel{!}{=}\binom{0}{0}$ admits a solution $\vec{v} \in \mathbb{R}^{2}$ different from the zero vector. (Hint: one can deduce from Cramer's rule that it suffices to consider the x such that $\operatorname{det} A_{x}=0$.)
(b) For each x determined above, provide a non-zero solution \vec{v} to the above system.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 15.11.2022, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html
6.2. (Finding certain linear maps)

Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that the associated linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \vec{v} \mapsto A \vec{v}$, maps the parallelogram

$$
\square=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq \frac{6}{7} x+\frac{2}{7} y \leq 1,0 \leq \frac{8}{7} y-\frac{4}{7} x \leq 1\right\}
$$

onto the unit square $\square=[0,1] \times[0,1]$, i.e., $f(\square):=\{f(\vec{v}): \vec{v} \in \square\}=\square$:

(Hint: it may be easier to find a matrix $B \in \mathbb{R}^{2 \times 2}$ such that the associated linear map maps \square onto \square. One may then take $A=B^{-1}$.)
6.3. (Gram determinants)

Consider the matrix $A=\binom{1}{3} \in \mathbb{R}^{2 \times 1}$ and the associated linear map $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}, v \mapsto A v$.
(a) Sketch the image $\operatorname{im} f=\{f(v): v \in \mathbb{R}\} \subseteq \mathbb{R}^{2}$ of f below:

(b) In your above sketch, mark the part of $\operatorname{im} f$ that is $\{f(v): 0 \leq v \leq 1\}$ and determine its length.

$$
\text { Length of }\{f(v): 0 \leq v \leq 1\}=\square
$$

(c) Compute $\sqrt{\operatorname{det}\left(A^{\mathrm{T}} A\right)}=\square$ and $\sqrt{\operatorname{det}\left(A A^{\mathrm{T}}\right)}=\square$.
6.4. (Gram determinants)
(4 credits)
Consider the matrix $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & 3 \\ 1 & 4\end{array}\right) \in \mathbb{R}^{4 \times 2}$ and the vector $\vec{b}=\left(\begin{array}{c}1 \\ 1 / 3 \\ 19 / 6 \\ 1\end{array}\right) \in \mathbb{R}^{4}$.
(a) Solve the system of linear equations $A^{\mathrm{T}} A \vec{x} \stackrel{!}{=} A^{\mathrm{T}} b$ for $\vec{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.

$$
x_{1}=\square, \quad x_{2}=\square .
$$

(b) With your solution \vec{x} from above, sketch the graph of the affine map $f: \mathbb{R} \rightarrow \mathbb{R}$, $t \mapsto x_{1}+x_{2} t$, below:

(The black points are $(-1,1),(0,1 / 3)$, $(3,19 / 6)$ and $(4,1)$.)
(c) Using the function f from the previous exercise, compute

$$
\begin{gather*}
\mathscr{E}_{f}:=(1-f(-1))^{2}+(1 / 3-f(0))^{2}+(19 / 6-f(3))^{2}+(1-f(4))^{2} . \\
\mathscr{E}_{f}=\square .
\end{gather*}
$$

(Hint: the final solution may look slightly ugly, but it is roughly 3.5.)
(d) Pick a vector $\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ other than \vec{x} and compute the quantity in (\star) with f replaced by $g: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto y_{1}+y_{2} t$. Also sketch the graph of g in the figure in (b).

$$
\mathscr{E}_{g}=\square
$$

(Remark: you may consult § 3.2.6 of the lecture notes for some general context on this exercise.)

