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8.1. (Cross products and orientation)

In each of the figures below you see a vector ~v drawn as and a vector ~w drawn as

. Discern for each figure whether the vector ~v × ~w is or .

~e1

~e2

~e3

~e1

~e2

~e3

© , © ,

© , © ,

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

29.11.2022, 23:55 o’clock. https://tc.tugraz.at/main/course/view.php?id=4636

https://www.math.tugraz.at/∼mtechnau/teaching/2022-w-engimaths.html

https://tc.tugraz.at/main/course/view.php?id=4636
https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html
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(Hint: pay very close attention to the direction of the three standard unit vectors ~e1, ~e2

and ~e3 for every figure separately.)

8.2. (Vectors and angles) (4 credits)

Consider the linear map f : R2→ R2, (v1, v2) 7→ (−v2, v1).

(a) Check which of the following statements are true. (None, one or multiple of them

may be true.)

© Geometrically, f describes a rotation by 90◦ in clockwise direction.

© Geometrically, f describes a rotation by 90◦ in anti-clockwise direction.

© Geometrically, f describes a reflection across the line R(01).

© area f (Ω) = areaΩ, where Ω is the set [1, 2]× [0, 1].

© area f (Ω) = 2 areaΩ, where Ω is the set [1, 8]× [1, 8].

© There is a non-zero vector ~b such that f (~b) = ~0.

© f has an eigenvector ~b ∈ R2.

(b) For vectors ~v = (v1, v2) and ~w= (w1, w2), compute





| |
− f (~w) f (~v)

| |





T



| |
~v ~w

| |



 =













.

8.3. (Eigenvalues and eigenvectors, I) (4 credits)

Consider (C , n) ∈ {(A, 2), (B, 3)}, where A and B are the following matrices:

A=

�
2 1

−1 0

�

, B =





1 2 1

2 1 1

0 3 1



.

For both choices of (C , n) do the following:
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(a) determine the characteristic polynomial χC = det(X1n − C) (here “X ” should be

treated like a variable; think of your favourite number, but do not plug it in),

χA = , χB = ,

(b) compute the eigenvalues of C (= the numbers λ that yield zero when substituted for

X in the polynomial χC) and all associated eigenvectors (= the non-zero solutions

~v ∈ Rn of (λ1n − C)~v
!
= ~0),

(c) and discern whether the matrix C is diagonalisable or not (i.e., decide whether you

can choose eigenvectors ~v1, . . . , ~vn such that the matrix with these eigenvectors as

columns has non-zero determinant).

A is diagonalisable:

�

© yes

© no

�

, B is diagonalisable:

�

© yes

© no

�

.

(Hint: you can find some worked examples in § 3.5 of the lecture notes.)

8.4. (Eigenvalues and eigenvectors, II) (4 credits)

Consider the matrix A∈ R2×2 and the vectors ~b1, . . . ,~b5 ∈ R
2 given below:

A=

�
11 −12

8 −9

�

, ~b1 =

�
1

1

�

, ~b2 =

�
0

0

�

, ~b3 =

�
3

1

�

, ~b4 =

�
3

2

�

, ~b5 =

�
1

0

�

.

(a) For each vector ~b j ( j = 1, . . . , 5), check whether it is an eigenvector of A and, if it is,

determine the corresponding eigenvalue.
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j ~b j is an eigenvector of A

1 © yes, with associated eigenvalue

© no

2 © yes, with associated eigenvalue

© no

3 © yes, with associated eigenvalue

© no

4 © yes, with associated eigenvalue

© no

5 © yes, with associated eigenvalue

© no

(b) Let Bi j ∈ R
2×2 denote the matrix with columns ~bi and ~b j. Compute the matrix

Ci j := B−1
i j

ABi j

for all three pairs (i, j) ∈ {(1, 3), (1, 4), (3, 5)}.












︸ ︷︷ ︸

C13

,













︸ ︷︷ ︸

C14

,













︸ ︷︷ ︸

C35

.
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