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9. exercise sheet for Engineering Mathematics

9.1. (Systems of linear differential equations)

In this exercise, you should apply linear algebra to solve a system of linear differential

equations. More precisely, the goal is to find two differentiable functions x , y : R → R

such that for all t ∈ R

�

ẋ(t)

ẏ(t)

�

!
=

�

x(t) + 2y(t)

2x(t) + y(t)

�

=

�

1 2

2 1

��

x(t)

y(t)

�

, (†)

and

x(0)
!
= 1, y(0)

!
= 3. (‡)

(Here a dot above a function means the derivative with respect to t, that is, ẋ(t) = x ′(t).)

(a) Compute the eigenvalues and associated eigenvectors of the matrix A=

�

1 2

2 1

�

.

(b) Find an invertible matrix T ∈ R2×2 such that D = T−1AT is a diagonal matrix.

(c) Find differentiable functions u, v : R→ R such that, for all t ∈ R,

�

u̇(t)

v̇(t)

�

!
= D

�

u(t)

v(t)

�

.

(Hint: try t 7→ exp(λt) for suitable λ.)

(d) Verify that

�

x(t)

y(t)

�

:= T

�

u(t)

v(t)

�

satisfies (†).

(e) Replace your solutions u and v found in (c) with scalar multiples of themselves in

such a way that the solution to (†) constructed in (d) also satisfies (‡).

9.2. (Differentiation)

Consider the two maps f : R2
→ R

2, (x , y) 7→ (x y2, exp(x)), and g : R2
→ R, (v, w) 7→

v − w. Compute the following:

(a) (g ◦ f )(x , y);

(b) the Jacobian matrices J f (x , y), Jg(v, w), and Jg◦ f (x , y),

(c) the matrix–matrix product Jg( f (x , y))J f (x , y).

(Hint: examples for computing the Jacobian matrices can be found in § 5.1.3.)
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