

Winter term 2022
Graz, 29.11.2022

9. exercise sheet for Engineering Mathematics

9.1. (Systems of linear differential equations)

In this exercise, you should apply linear algebra to solve a system of linear differential equations. More precisely, the goal is to find two differentiable functions $x, y: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $t \in \mathbb{R}$

$$
\binom{\dot{x}(t)}{\dot{y}(t)} \stackrel{!}{=}\binom{x(t)+2 y(t)}{2 x(t)+y(t)}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x(t)}{y(t)},
$$

and

$$
\begin{equation*}
x(0) \stackrel{!}{=} 1, \quad y(0) \stackrel{!}{=} 3 \tag{+}
\end{equation*}
$$

(Here a dot above a function means the derivative with respect to t, that is, $\dot{x}(t)=x^{\prime}(t)$.)
(a) Compute the eigenvalues and associated eigenvectors of the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
(b) Find an invertible matrix $T \in \mathbb{R}^{2 \times 2}$ such that $D=T^{-1} A T$ is a diagonal matrix.
(c) Find differentiable functions $u, v: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $t \in \mathbb{R}$,

$$
\binom{\dot{u}(t)}{\dot{v}(t)} \stackrel{!}{=} D\binom{u(t)}{v(t)} .
$$

(Hint: try $t \mapsto \exp (\lambda t)$ for suitable λ.)
(d) Verify that $\binom{x(t)}{y(t)}:=T\binom{u(t)}{v(t)}$ satisfies (\dagger).
(e) Replace your solutions u and v found in (c) with scalar multiples of themselves in such a way that the solution to (\dagger) constructed in (d) also satisfies (\ddagger).
9.2. (Differentiation)

Consider the two maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(x y^{2}, \exp (x)\right)$, and $g: \mathbb{R}^{2} \rightarrow \mathbb{R},(v, w) \mapsto$ $v-w$. Compute the following:
(a) $(g \circ f)(x, y)$;
(b) the Jacobian matrices $J_{f}(x, y), J_{g}(v, w)$, and $J_{g \circ f}(x, y)$,
(c) the matrix-matrix product $J_{g}(f(x, y)) J_{f}(x, y)$.
(Hint: examples for computing the Jacobian matrices can be found in § 5.1.3.)

