

9. exercise sheet for Engineering Mathematics

9.1. (Systems of linear differential equations) In this exercise, you should apply linear algebra to solve a system of linear differential equations. More precisely, the goal is to find two differentiable functions $x, y : \mathbb{R} \to \mathbb{R}$ such that for all $t \in \mathbb{R}$

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} x(t) + 2y(t) \\ 2x(t) + y(t) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix},$$
(†)

and

$$x(0) \stackrel{!}{=} 1, \quad y(0) \stackrel{!}{=} 3.$$
 (\$)

(Here a dot above a function means the derivative with respect to *t*, that is, $\dot{x}(t) = x'(t)$.)

- (a) Compute the eigenvalues and associated eigenvectors of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- (b) Find an invertible matrix $T \in \mathbb{R}^{2 \times 2}$ such that $D = T^{-1}AT$ is a diagonal matrix.
- (c) Find differentiable functions $u, v \colon \mathbb{R} \to \mathbb{R}$ such that, for all $t \in \mathbb{R}$,

$$\begin{pmatrix} \dot{u}(t) \\ \dot{v}(t) \end{pmatrix} \stackrel{!}{=} D \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}.$$

(Hint: try $t \mapsto \exp(\lambda t)$ for suitable λ .)

- (d) Verify that $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \coloneqq T \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$ satisfies (†).
- (e) Replace your solutions u and v found in (c) with scalar multiples of themselves in such a way that the solution to (†) constructed in (d) also satisfies (‡).

9.2. (Differentiation)

Consider the two maps $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (xy^2, \exp(x))$, and $g : \mathbb{R}^2 \to \mathbb{R}$, $(v, w) \mapsto v - w$. Compute the following:

- (a) $(g \circ f)(x, y);$
- (b) the Jacobian matrices $J_f(x, y)$, $J_g(v, w)$, and $J_{gof}(x, y)$,
- (c) the matrix-matrix product $J_g(f(x, y))J_f(x, y)$.

(Hint: examples for computing the Jacobian matrices can be found in § 5.1.3.)