Winter term 2022
Graz, 06.12.2022

10. exercise sheet for Engineering Mathematics

(first name)
(last name)
(student id number)

10.1. (Differentiation)

Consider the two maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(x y, x-y)$, and $g: \mathbb{R}^{2} \rightarrow \mathbb{R},(v, w) \mapsto$ $v^{2}+w^{2}$. Compute the following:
(a) $(g \circ f)(x, y)$;
(b) the Jacobian matrices $J_{f}(x, y), J_{g}(v, w)$, and $J_{g \circ f}(x, y)$,
(c) the matrix-matrix product $J_{g}(f(x, y)) J_{f}(x, y)$.

10.2. (Gradient)

Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto \cos (x-y)+x y$.
(a) Compute $J_{f}(x, y)$.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 13.12.2022, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html
(b) Compute grad $f(x, y)$.
(c) Pick three distinct points $(x, y) \in[-3,3] \times[-2,2]$ for which you compute the gradient $\operatorname{grad} f(x, y)$ numerically and draw it as a vector based at (x, y) in the following picture:

(Hint: the curved lines are curves on which f is constant.)
10.3. (Potentials)
(a) Find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\operatorname{grad} f(x, y)=\left(2 x y-1, x^{2}\right)$.
(b) Find a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\operatorname{grad} g(x, y)=(\sin (x-y)+x \cos (x-y),-x \cos (x-$ $y)$).
(Hint: expand the definition of the gradient and see what this tells you about the function f or g you need to find. Once you have f or g, it is also easy to check that your solution is correct; just compute the gradient.)
10.4. (Divergence)
(4 credits)
Let $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(F_{1}(x, y), F_{2}(x, y)\right)$ be a vector field. Define the divergence $\operatorname{div} \vec{F}(x, y)$ of \vec{F} at (x, y) to be $\partial_{1} F_{1}(x, y)+\partial_{2} F_{2}(x, y)$ if the appearing partial derivatives exist. Compute $\operatorname{div} \operatorname{grad} f(x, y)$ and $\operatorname{div} \operatorname{grad} g(x, y)$, where f and g are the functions from exercise 10.3. (Hint: here the main task is to decypher the notation.)

