

11. exercise sheet for Engineering Mathematics

11.1. (Substantial derivative)

Suppose that $\vec{u}: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^3$ models a time-dependent velocity field. That is, for any point $\vec{x} \in \mathbb{R}^3$ in space and any time $t \in \mathbb{R}$, the vector $\vec{u}(\vec{x}, t)$ is thought of as the velocity of some substance at the given point and time. Imagine an observer floating within the stream given by \vec{u} , described by their position function $\vec{X}: \mathbb{R} \to \mathbb{R}^3$ ($\vec{X}(t)$ is the position of the observer in space at time t). The position of the observer then satisfies

$$\vec{X}'(t) \coloneqq J_{\vec{X}}(t) \stackrel{!}{=} \vec{u}(\vec{X}(t), t).$$
 (†)

Imagine that the observer measures some scalar quantity $c : \mathbb{R}^3 \times \mathbb{R}$ (which depends on the position $\vec{x} \in \mathbb{R}^3$ and time *t*) as they move along their trajectory.

(a) Derive a formula for the rate of change of *c* as observed by the observer.
(Hint: you ought to differentiate c(X(t), t) [why?]. Use the chain rule, Theorem 5.6. In fluid dynamics, this is often denoted by Dc/Dt and is called substantial derivative or material derivative.)

Now put $\vec{u}(\vec{x}, t) = (x_1, 0, 1), \vec{X}(t) = (\exp(t), 5, t)$, and $c(\vec{x}, t) = x_3$.

(b) Verify that \vec{X} and \vec{u} indeed satisfy (†).

(c) Compute
$$\frac{Dc}{Dt}$$
.

11.2. (*Taylor polynomials*)

For the functions f given below, compute their Taylor polynomials

$$\sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

of order n = 0, 1, 2, 3 at 0 and use a computer with software of your choice to plot the graphs of these polynomials along with the graph of f on the interval (-1, 1).

- (a) $f: (-1, 1) \rightarrow \mathbb{R}, x \mapsto -\log(1-x);$
- (b) $f : \mathbb{R} \to (-\pi/2, \pi/2), x \mapsto \arctan(x)$.

(Hint: see § 6.2 in the lecture notes for more on Taylor polynomials. For the task of computing derivatives, you may want to take another look at § 0.2.)