

Winter term 2022
Graz, 13.12.2022

11. exercise sheet for Engineering Mathematics

11.1. (Substantial derivative)

Suppose that $\vec{u}: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ models a time-dependent velocity field. That is, for any point $\vec{x} \in \mathbb{R}^{3}$ in space and any time $t \in \mathbb{R}$, the vector $\vec{u}(\vec{x}, t)$ is thought of as the velocity of some substance at the given point and time. Imagine an observer floating within the stream given by \vec{u}, described by their position function $\vec{X}: \mathbb{R} \rightarrow \mathbb{R}^{3}(\vec{X}(t)$ is the position of the observer in space at time t). The position of the observer then satisfies

$$
\begin{equation*}
\vec{X}^{\prime}(t):=J_{\vec{X}}(t) \stackrel{!}{=} \vec{u}(\vec{X}(t), t) \tag{†}
\end{equation*}
$$

Imagine that the observer measures some scalar quantity $c: \mathbb{R}^{3} \times \mathbb{R}$ (which depends on the position $\vec{x} \in \mathbb{R}^{3}$ and time t) as they move along their trajectory.
(a) Derive a formula for the rate of change of c as observed by the observer.
(Hint: you ought to differentiate $c(\vec{X}(t), t)$ [why?]. Use the chain rule, Theorem 5.6. In fluid dynamics, this is often denoted by $\frac{D c}{D t}$ and is called substantial derivative or material derivative.)
Now put $\vec{u}(\vec{x}, t)=\left(x_{1}, 0,1\right), \vec{X}(t)=(\exp (t), 5, t)$, and $c(\vec{x}, t)=x_{3}$.
(b) Verify that \vec{X} and \vec{u} indeed satisfy (\dagger).
(c) Compute $\frac{\mathrm{D} c}{\mathrm{D} t}$.
11.2. (Taylor polynomials)

For the functions f given below, compute their Taylor polynomials

$$
\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}
$$

of order $n=0,1,2,3$ at 0 and use a computer with software of your choice to plot the graphs of these polynomials along with the graph of f on the interval $(-1,1)$.
(a) $f:(-1,1) \rightarrow \mathbb{R}, x \mapsto-\log (1-x)$;
(b) $f: \mathbb{R} \rightarrow(-\pi / 2, \pi / 2), x \mapsto \arctan (x)$.
(Hint: see § 6.2 in the lecture notes for more on Taylor polynomials. For the task of computing derivatives, you may want to take another look at § 0.2.)

