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(Substantial derivative)

Suppose that ii: R®* x R — R® models a time-dependent velocity field. That is, for any
point ¥ € R? in space and any time t € R, the vector ii(X, t) is thought of as the velocity
of some substance at the given point and time. Imagine an observer floating within the
stream given by &, described by their position function X : R — R? (X(t) is the position
of the observer in space at time t). The position of the observer then satisfies

X'(t) = Jz(t) = 2(X(t), ). ©)

Imagine that the observer measures some scalar quantity c: R x R (which depends on
the position ¥ € R® and time t) as they move along their trajectory.

(a) Derive a formula for the rate of change of ¢ as observed by the observer.
(Hint: you ought to differentiate c(X(t),t) [why?]. Use the chain rule, Theo-
rem 5.6. In fluid dynamics, this is often denoted by % and is called substantial
derivative or material derivative.)
Now put t(X,t) = (x;,0,1), X(t) = (exp(t),5,t), and c(X,t) = x5.
(b) Verify that X and i indeed satisfy (1).

Dc
c¢) Compute —.
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(Taylor polynomials)
For the functions f given below, compute their Taylor polynomials
0
2
= k!

of order n = 0,1,2,3 at 0 and use a computer with software of your choice to plot the
graphs of these polynomials along with the graph of f on the interval (—1,1).

@ f:(—1,1) >R, x —» —log(1—x);
®d) f:R—>(—n/2,7/2), x — arctan(x).

(Hint: see § 6.2 in the lecture notes for more on Taylor polynomials. For the task of
computing derivatives, you may want to take another look at § 0.2.)
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