

12. exercise sheet for Engineering Mathematics

12.1. (Taylor polynomials)

For the functions f given below, compute their Taylor polynomials

$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}$$

of order n = 0, 1, 2, 3 at 0 ($x_0 = 0$ in the notation from § 6.2) and use a computer with software of your choice to plot the graphs of these polynomials along with the graph of f on the interval (-1, 1).

(a)
$$f : \mathbb{R} \to \mathbb{R}, x \mapsto x^5 + 3x^3 + x - 1;$$

$$\sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k} =$$

(b)
$$f: [-1, 1] \to [0, \pi], x \mapsto \arccos(x)$$

=

$$\sum_{k=0} \frac{f^{(k)}(0)}{k!} x^k$$

(Hint: see § 6.2 in the lecture notes for more on Taylor polynomials. For the task of computing derivatives, you may want to take another look at § 0.2. It suffices to write down the Taylor polynomials for n = 3. For the plots, please use a separate sheet if you cannot superimpose them onto this sheet.)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 10.01.2023, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html

(4 credits)

In this exercise, we shall use Newton's method to find numerical approximations to the roots of functions. (You can read up on Newton's method in § 6.3 of the lecture notes, but this exercise is self-contained.) Consider the function $\vec{f} : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x \exp(y) - 1, y - x - 1)$.

12.2. (Newton's method)

(b) Determine all $(x, y) \in \mathbb{R}^2$ for which the matrix $J_{\vec{f}}(x, y) \in \mathbb{R}^{2 \times 2}$ is invertible and provide a formula for $J_{\vec{f}}(x, y)^{-1}$.

$$J_{\vec{f}}(x,y)^{-1} = \begin{pmatrix} \\ \\ \\ \end{pmatrix} \text{ for all } (x,y) \in \mathbb{R}^2 \text{ such that...}$$

(c) Use your answer for (b) to find a formula for

$$\operatorname{Iter}(x, y) \coloneqq (x, y) - J_{\vec{f}}(x, y)^{-1} \vec{f}(x, y),$$

assuming that (x, y) are such that $J_{\vec{f}}(x, y)$ is invertible.

Iter
$$(x, y) = \begin{pmatrix} & & \\ & & \end{pmatrix} \in \mathbb{R}^2.$$

(d) Set $\vec{x}_0 = (1, 1)$, $\vec{x}_1 = \text{Iter}(\vec{x}_0)$, $\vec{x}_2 = \text{Iter}(\vec{x}_1)$, $\vec{x}_3 = \text{Iter}(\vec{x}_2)$. Use your formula from (c) and a calculator (or suitable software) to complete the following table:

(Hint: here you are allowed [and encouraged] to use numerical approximations provided by your calculator. Otherwise you get iterated exponentials which quickly become very awkward. For $\vec{f}(\vec{x}_3)$ you should get a vector with quite small entries.)

(4 credits)

12.3. (*Polar coordinates, differentiation*) Consider the function

$$f: \mathbb{R}^2 \setminus \{\vec{0}\} \to \mathbb{R}, \quad (x, y) \mapsto \frac{2xy}{(x^2 + y^2)^2},$$

as well as the well-known polar coordinate map $\vec{P} : \mathbb{R}^2 \to \mathbb{R}^2$, $(r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi)$. Let $\vec{v} = (1/\sqrt{2}, 1/\sqrt{2})$. Compute the following quantities.

12.4. (*Rotation of vector fields*) (4 credits) Consider the vector fields $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{x} \mapsto (2x_1, -1, 0)$, and $\vec{G} : \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{x} \mapsto (x_1 - x_2, x_2^2 x_3, x_3)$.

3

(b) Does there exist a function $f : \mathbb{R}^3 \to \mathbb{R}$ such that $\vec{F} = \operatorname{grad} f$? If not, give a quick justification; otherwise exhibit such an f.

(c) Does there exist a function $g: \mathbb{R}^3 \to \mathbb{R}$ such that $\vec{G} = \operatorname{grad} g$? If not, give a quick justification; otherwise exhibit such an f.

Note: please observe the delayed deadline for submitting solutions due to the winter break.