Winter term 2022
Graz, 20.12.2022

12. exercise sheet for Engineering Mathematics

(first name)
(last name)
(student id number)

12.1. (Taylor polynomials)
(4 credits)
For the functions f given below, compute their Taylor polynomials

$$
\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}
$$

of order $n=0,1,2,3$ at $0\left(x_{0}=0\right.$ in the notation from § 6.2) and use a computer with software of your choice to plot the graphs of these polynomials along with the graph of f on the interval $(-1,1)$.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{5}+3 x^{3}+x-1$;

$$
\sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k}=
$$

(b) $f:[-1,1] \rightarrow[0, \pi], x \mapsto \arccos (x)$.

$$
\sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k}=
$$

(Hint: see § 6.2 in the lecture notes for more on Taylor polynomials. For the task of computing derivatives, you may want to take another look at § 0.2. It suffices to write down the Taylor polynomials for $n=3$. For the plots, please use a separate sheet if you cannot superimpose them onto this sheet.)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 10.01.2023, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html
12.2. (Newton's method)

In this exercise, we shall use Newton's method to find numerical approximations to the roots of functions. (You can read up on Newton's method in § 6.3 of the lecture notes, but this exercise is self-contained.) Consider the function $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(x \exp (y)-$ $1, y-x-1$).
(a) Compute $J_{\vec{f}}(x, y)=$

(b) Determine all $(x, y) \in \mathbb{R}^{2}$ for which the matrix $J_{\vec{f}}(x, y) \in \mathbb{R}^{2 \times 2}$ is invertible and provide a formula for $J_{\vec{f}}(x, y)^{-1}$.

(c) Use your answer for (b) to find a formula for

$$
\operatorname{Iter}(x, y):=(x, y)-J_{\vec{f}}(x, y)^{-1} \vec{f}(x, y)
$$

assuming that (x, y) are such that $J_{\vec{f}}(x, y)$ is invertible.

(d) Set $\vec{x}_{0}=(1,1), \vec{x}_{1}=\operatorname{Iter}\left(\vec{x}_{0}\right), \vec{x}_{2}=\operatorname{Iter}\left(\vec{x}_{1}\right), \vec{x}_{3}=\operatorname{Iter}\left(\vec{x}_{2}\right)$. Use your formula from (c) and a calculator (or suitable software) to complete the following table:

(Hint: here you are allowed [and encouraged] to use numerical approximations provided by your calculator. Otherwise you get iterated exponentials which quickly become very awkward. For $\vec{f}\left(\vec{x}_{3}\right)$ you should get a vector with quite small entries.)
12.3. (Polar coordinates, differentiation)

Consider the function

$$
f: \mathbb{R}^{2} \backslash\{\overrightarrow{0}\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

as well as the well-known polar coordinate map $\vec{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(r, \varphi) \mapsto(r \cos \varphi, r \sin \varphi)$. Let $\vec{v}=(1 / \sqrt{2}, 1 / \sqrt{2})$. Compute the following quantities.
(a) $\partial_{1} f(x, y)=\square$ and $\partial_{2} f(x, y)=\square$.
(b) $\frac{\partial f}{\partial \vec{v}}(x, y)=\square$.
(c) $(f \circ \vec{P})(r, \varphi)=\square$.
(d) $\frac{\partial f}{\partial r}(r, \varphi)=\square$ and $\frac{\partial f}{\partial \varphi}(r, \varphi)=\square$.
(Hint: this notation means $\partial_{1}(f \circ \vec{P})$ and $\partial_{2}(f \circ \vec{P})$.)
12.4. (Rotation of vector fields)

Consider the vector fields $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \vec{x} \mapsto\left(2 x_{1},-1,0\right)$, and $\vec{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \vec{x} \mapsto\left(x_{1}-\right.$ $x_{2}, x_{2}^{2} x_{3}, x_{3}$).

(b) Does there exist a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\vec{F}=\operatorname{grad} f$? If not, give a quick justification; otherwise exhibit such an f.
(c) Does there exist a function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\vec{G}=\operatorname{grad} g$? If not, give a quick justification; otherwise exhibit such an f.

Note: please observe the delayed deadline for submitting solutions due to the winter break.

