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12.1. (Taylor polynomials) (4 credits)

For the functions f given below, compute their Taylor polynomials

n
∑

k=0

f (k)(0)

k!
x k

of order n = 0, 1, 2, 3 at 0 (x0 = 0 in the notation from § 6.2) and use a computer with

software of your choice to plot the graphs of these polynomials along with the graph of

f on the interval (−1, 1).

(a) f : R→ R, x 7→ x5 + 3x3 + x − 1;

3
∑

k=0

f (k)(0)

k!
x k =

(b) f : [−1, 1]→ [0,π], x 7→ arccos(x).

3
∑

k=0

f (k)(0)

k!
x k =

(Hint: see § 6.2 in the lecture notes for more on Taylor polynomials. For the task of

computing derivatives, you may want to take another look at § 0.2. It suffices to write

down the Taylor polynomials for n = 3. For the plots, please use a separate sheet if you

cannot superimpose them onto this sheet.)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

10.01.2023, 23:55 o’clock. https://tc.tugraz.at/main/course/view.php?id=4636

https://www.math.tugraz.at/∼mtechnau/teaching/2022-w-engimaths.html
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12.2. (Newton’s method) (4 credits)

In this exercise, we shall use Newton’s method to find numerical approximations to the

roots of functions. (You can read up on Newton’s method in § 6.3 of the lecture notes, but

this exercise is self-contained.) Consider the function ~f : R2→ R2, (x , y) 7→ (x exp(y)−
1, y − x − 1).

(a) Compute J ~f (x , y) =

























.

(b) Determine all (x , y) ∈ R2 for which the matrix J ~f (x , y) ∈ R2×2 is invertible and

provide a formula for J ~f (x , y)−1.

J ~f (x , y)−1 =













































for all (x , y) ∈ R2 such that. . .

(c) Use your answer for (b) to find a formula for

Iter(x , y) := (x , y)− J ~f (x , y)−1 ~f (x , y),

assuming that (x , y) are such that J ~f (x , y) is invertible.

Iter(x , y) =













































∈ R2.

(d) Set ~x0 = (1, 1), ~x1 = Iter(~x0), ~x2 = Iter(~x1), ~x3 = Iter(~x2). Use your formula

from (c) and a calculator (or suitable software) to complete the following table:
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i 0 1 2 3

~x i ≈
�

1

1

�





























































~f (~x i)≈

















































































(Hint: here you are allowed [and encouraged] to use numerical approximations

provided by your calculator. Otherwise you get iterated exponentials which quickly

become very awkward. For ~f (~x3) you should get a vector with quite small entries.)

12.3. (Polar coordinates, differentiation) (4 credits)

Consider the function

f : R2 \ {~0} → R, (x , y) 7→ 2x y

(x2 + y2)2
,

as well as the well-known polar coordinate map ~P : R2→ R2, (r,ϕ) 7→ (r cosϕ, r sinϕ).

Let ~v = (1/
p

2, 1/
p

2). Compute the following quantities.

(a) ∂1 f (x , y) = and ∂2 f (x , y) = .

(b)
∂ f

∂ ~v
(x , y) = .

(c) ( f ◦ ~P)(r,ϕ) = .

(d)
∂ f

∂ r
(r,ϕ) = and

∂ f

∂ ϕ
(r,ϕ) = .

(Hint: this notation means ∂1( f ◦ ~P) and ∂2( f ◦ ~P).)

12.4. (Rotation of vector fields) (4 credits)

Consider the vector fields ~F : R3 → R3, ~x 7→ (2x1,−1, 0), and ~G : R3 → R3, ~x 7→ (x1 −
x2, x2

2
x3, x3).
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(a) Compute rot ~F =

































and rot ~G =

































.

(b) Does there exist a function f : R3 → R such that ~F = grad f ? If not, give a quick

justification; otherwise exhibit such an f .

(c) Does there exist a function g : R3 → R such that ~G = grad g? If not, give a quick

justification; otherwise exhibit such an f .

Note: please observe the delayed deadline for submitting solutions due to the winter break.
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