

Winter term 2022
Graz, 10.01.2023

13. exercise sheet for Engineering Mathematics

13.1. (Sums and integrals)

This exercise is aimed at getting a feel for the definition of the Darboux integral (see Chapter 7 of the lecture notes).
(a) Stare at the picture below and use this to find a formula for $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+\ldots+n^{3}$.

(b) Using a partition of [0,1] into n pieces of equal length, the definition of the Darboux integral yields

$$
\sum_{k=1}^{n}((k-1) / n)^{3}(1 / n) \leq \int_{0}^{1} x^{3} \mathrm{~d} x \leq \sum_{k=1}^{n}(k / n)^{3}(1 / n)
$$

Use your answer from (a) to compute the outer two sums. Also compute the integral in the middle and show that, as $n \rightarrow \infty$, both sums converge to that integral (this corresponds to taking the partition to be much finer).
13.2. (A variant of the Gaussian integral)

Compute $\int_{-\infty}^{\infty} \exp \left(-x^{2}+x\right) \mathrm{d} x$.
(Hint: remember the 'completing the square' trick from your school days and use the result from Example 7.3.)
13.3. (Volume of a solid)

Compute the volume of

$$
R=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 1,0 \leq y \leq x, 0 \leq z \leq x y\right\}
$$

(Hint: compute $\int_{R} 1 \mathrm{~d}^{3} \vec{x}$ using Fubini's theorem.)

