

14. exercise sheet for Engineering Mathematics

14.1. (*Area computation*) Compute the area of $\Omega = \{(x, y) \in \mathbb{R}^3 : 0 \le x \le 2\pi - \sin(y), 0 \le y \le x\}.$

(Hint: see the solution of exercise 13.3.)

14.2. (Volume of a solid, II) (4 credits) Compute the volume of $R = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, 0 \le y \le 1 - x, 0 \le z \le xy\}.$

(Hint: see the solution of exercise 13.3.)

14.3. (Length of a curve) (4 credits) Consider the image $\gamma([0,1]) = \{\gamma(t) : t \in [0,1]\}$ of [0,1] under the function $\gamma : \mathbb{R} \to \mathbb{R}^2$,

(4 credits)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 24.01.2023, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=4636 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-engimaths.html

2

parametrises a torus $T = \vec{\Phi}(U)$ (also known as a "doughnut") with outer radius R and inner radius *r*. Compute the following:

(Hints: for (b), see exercise 6.3. For (c) and (d), numerical approximations suffice; you may use a calculator for obtaining these.)

14.4. (Area of a torus)

Let R > r > 0 and put $U = [0, 2\pi)^2$. The map

(c) $\sum_{n=0} \|\gamma((n+1)/N) - \gamma(n/N)\| \approx$ (d) $\sum_{n=0}^{N-1} \operatorname{length}(d\gamma_{n/N}([0,1/N])) \approx$

(b) the length of
$$d\gamma_t([0, \tau]) =$$
;

 $d\gamma_{n/N}([0, 1/N]) \in \mathbb{R}^2$ (shifted by $\gamma(n/N)$) $\gamma([0,1]) \subset \mathbb{R}^2$ N = 4N = 8

Let $\tau > 0$ and put N = 4. Compute the following:

(a) $d\gamma_t : \mathbb{R} \to \mathbb{R}^2$;

 Γ

(4 credits)

 $\in \mathbb{R}^2$.

(b) det
$$(J_{\vec{\Phi}}(u,v)^{\mathrm{T}}J_{\vec{\Phi}}(u,v)) =$$

(Hint: the matrix whose determinant is to be computed should turn out to be a diagonal matrix.)

(c)
$$\operatorname{area}(T) = \iint_{T} 1 \, \mathrm{d}A = \int_{U} \sqrt{\operatorname{det}(J_{\vec{\Phi}}(u,v)^{\mathrm{T}}J_{\vec{\Phi}}(u,v))} \, \mathrm{d}^{2}(u,v) =$$

(Hint: you may verify your result by checking that, for r = 1 and R = 3, your formula yields \approx 118.435.)