Winter term 2022
Graz, 24.01.2023

15. exercise sheet for Engineering Mathematics

15.1. (Length of a curve, II)

Determine the length of the curve $\left\{\left(\frac{3}{2}(t-1)^{3 / 2}, t\right) \in \mathbb{R}^{2}: 1 \leq t \leq 2\right\}$.

(Hint: your final answer should be approximately equal to 2.74264 .)
15.2. (Length of a curve, III)

Determine the length of the curve $\left\{(\cos (\pi t) \exp (t), \sin (\pi t) \exp (t)) \in \mathbb{R}^{2}: 0 \leq t \leq 2\right\}$.

(Hint: your final answer should be approximately equal to 21.06413.)
15.3. (Surface integrals and line integrals)

Let $U=\left\{(r, \varphi) \in \mathbb{R}^{2}: r^{2}+\varphi^{2} \leq 1^{2}\right\}$ be the closed disk in \mathbb{R}^{2} with centre $(0,0)$ and radius 1 and consider the surface $S=\vec{\Phi}(U)$, where

$$
\vec{\Phi}: U \rightarrow \mathbb{R}^{3}, \quad\binom{r}{\varphi} \mapsto\left(\begin{array}{c}
r \cos (2 \pi \varphi) \\
r \sin (2 \pi \varphi) \\
\varphi
\end{array}\right)
$$

Consider also the map

$$
\vec{\gamma}:[0,2 \pi] \rightarrow \mathbb{R}^{3}, \quad t \mapsto \vec{\Phi}(\cos (t), \sin (t))
$$

which parametrises the curve $C=\vec{\gamma}([0,2 \pi])$.

Moreover, consider the vector field $\vec{K}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $\vec{K}(x, y, z)=(0,0, z)$.
Compute:
(a) $\vec{n}(r, \varphi):=\frac{\partial \vec{\Phi}}{\partial r}(r, \varphi) \times \frac{\partial \vec{\Phi}}{\partial \varphi}(r, \varphi)$,
(b) $\operatorname{rot} \vec{K}(x, y, z)$,
(c) $\iint_{S} \vec{K} \cdot \mathrm{~d} \vec{A}$,
(d) $\int_{C} \operatorname{rot} \vec{K} \cdot \mathrm{~d} \vec{s}$.
(Hint: for the definition of the integrals in (c) and (d), see § 7.3 of the lecture notes. The computations in (a), (b), and (d) should be rather straight-forward. The computation in (c) requires more work, also because you need to parametrise U somehow. Use polar coordinates as defined in § 6.4.)

