

Winter term 2022
Graz, 06.10.2022

1. exercise sheet for Mathematics for Advanced Materials Science

1.1. (Linear ordinary differential equations)

Consider the differential equation

$$
\begin{equation*}
\ddot{x}+\dot{x}+x \stackrel{!}{=} 0 \tag{1}
\end{equation*}
$$

(a) Find a function $x: \mathbb{R} \rightarrow \mathbb{R}$ solving the differential equation (1) and satisfying $x(0)=0$ and $\dot{x}(0)=1$. (Hint: you may test your solution for correctness by verifying, using a calculator, that $x(1) \approx 0.533507$.)
(b) Find two different solutions $x: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation (1) with $x(0)=1$.
1.2. (Computing with complex numbers)

For this exercise, please read the rest of $\S 1.2$ of the lecture notes (about one page) and note especially the examples at the end of that section. Write the following complex numbers in the form $a+\mathrm{i} b$ with real numbers a and b.
(a) $\frac{1}{2+\mathrm{i}}$,
(b) $\frac{2+4 \mathrm{i}}{1+3 \mathrm{i}}-2+\mathrm{i}$,
(c) $\left|\frac{1}{2+\mathrm{i}}\right|$,
(d) $\sqrt{3+4 \mathrm{i}}$.
(Hint for (d): find two complex numbers $z=a+\mathrm{i} b$ with $z^{2}=3+4 \mathrm{i}$.)

