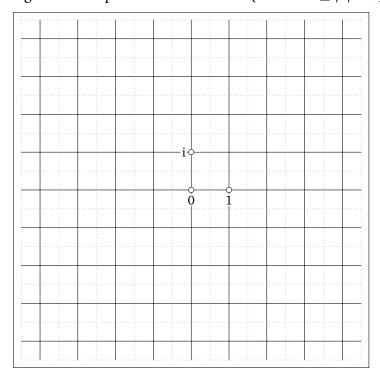
GRAZ UNIVERSITY OF TECHNOLOGY INSTITUTE OF ANALYSIS AND NUMBER THEORY Marc Technau

2. exercise sheet for Mathematics for Advanced Materials Science

(first name)	(last name)
(student id number)	

2.1. (Linear ordinary differential equations)

(4 credits)


- (a) Let λ_0 be an arbitrary number. Verify that both $t\mapsto \exp(\lambda_0 t)$ and $t\mapsto t\exp(\lambda_0 t)$ satisfy the differential equation $\ddot{x}-2\lambda_0\dot{x}+\lambda_0^2x\stackrel{!}{=}0$.
- (b) Find a solution x to the differential equation from (a) with x(0) = 2 and $\dot{x}(0) = 3$.

(For part (a) of this exercise you may need more space than is given here. Use a separate sheet.)

2.2. (Working with complex numbers)

(4 credits)

Sketch the following set of complex numbers below: $\{z \in \mathbb{C} : 3 \le |z| < 4, \operatorname{Re}(z) \ge -2\}$.

2.3. (Solving quadratic equations)

(4 credits)

Find all (complex) solutions to the equation $X^2 - 6X + 12 \stackrel{!}{=} 0$.

(Hint: you can use the formula for finding roots of quadratic polynomials and $\sqrt{-1} = \pm i$.)

2.4. (Complex differentiation)

(4 credits)

Let z be a complex number. Compute:

(a)
$$\frac{d}{dz}(z^7 + 4z^2 - \cos(z) + 42\sin(z)) =$$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}z} \left(\exp\left(\frac{z^3}{z+1}\right) (1+z)^2 \right) =$$
 for $z \neq -1$.

(Hint: just pretend that z is a real number and differentiate as you would have done in school. $\exp' = \exp$, $\cos' = -\sin$, $\sin' = \cos$.)