GRAZ UNIVERSITY OF TECHNOLOGY INSTITUTE OF ANALYSIS AND NUMBER THEORY Marc Technau

4. exercise sheet for Mathematics for Advanced Materials Science

(first name)	(last name)	
(student id number)		
4.1. (Laplace transform) Find $\mathcal{L}\{f\}$ where $f(t) = t \sin(t) \exp(t)$	(t).	(4 credits)
$\mathscr{L}\{f\}(s)=$		

(Hint: $\mathcal{L}{f}(4) = 0.06$. To find the solution you can try to use integration by parts a couple of times. If done correctly, integrating by parts four times should suffice. Alternatively, you are free to use Proposition 2.4 and Table 1 from the lecture notes.)

4.2. (Laplace transform)

(4 credits)

In exercise 3.4 you have computed

$$\mathcal{L}\{x\}(s) = \frac{3s(s^2 + s + 1) + 4}{3s^4 + 4s^2 + 1}$$

for the solution x to the following initial value problem:

$$\begin{cases} \text{differential equation: } 3\ddot{x} + x \stackrel{!}{=} \sin \text{ on } \mathbb{R}_+, \\ \text{initial conditions: } \begin{cases} \dot{x}(0) \stackrel{!}{=} 1, \\ x(0) \stackrel{!}{=} 1. \end{cases} \end{cases}$$

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 03.11.2022, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-mams.html

Invert the above Laplace transform to find an expression for x.

$$x(t) =$$

(Hint: you can use $x(1) \approx 1.8352$ and $x(2) \approx 2.3259$ to verify your result.)

4.3. (Laplace transform) Find a function f with $\mathcal{L}\{f\}(s) = \frac{s-2}{s^2+4}$.

$$f(t) =$$

(Hint: you can use $f(1) \approx 0.10316$ and $f(\pi) = 1$ to verify your result.)

4.4. (Laplace transform)

(4 credits)

Compute

$$\mathcal{L}\lbrace t\mapsto e^{\mathrm{i}t}\rbrace(s)=\int_0^\infty e^{\mathrm{i}t}e^{-st}\,\mathrm{d}t$$

and use this to deduce the following formulae:

(a)
$$\mathcal{L}\{\cos\}(s) = \frac{s}{s^2 + 1}$$
, and

(b)
$$\mathcal{L}\{\sin\}(s) = \frac{1}{s^2 + 1}$$
.

(Remark: unlike the other exercises above, this one actually asks for the computation that takes you to the final result. If you run out of space here, please use a separate sheet.)