5. exercise sheet for Mathematics for Advanced Materials Science

5.1. (Solving a system of linear equations)

Consider the following system of linear equations:

$$
\left(\begin{array}{cccc}
4 & 0 & 2 & 1 \\
1 & 0 & 2 & 0 \\
3 & 5 & 0 & 3 \\
0 & 2 & 5 & 0 \\
4 & 5 & 2 & 3
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \stackrel{!}{=}\left(\begin{array}{l}
0 \\
1 \\
2 \\
4 \\
3
\end{array}\right) .
$$

Find the correct value of n such that the above system makes sense (i.e., such that the matrix-vector product on the left hand side can be computed). Subsequently determine all solutions to the above system.
(Hint: if you know Gauß's algorithm, this exercise should be easy for you. If you do not, then you can read up on Gauß's algorithm in § 3.6 of the lecture notes. If you do not want to read this, then you can also simply write out what the above matrix-vector multiplication means and then solve the resulting system of equations using ad-hoc considerations.)
5.2. (Solving a system of linear equations)

Find all solutions $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ to the following system of linear equations:

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
3 & 5 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \stackrel{!}{=}\binom{3}{3}
$$

(The hint from exercise 5.2 also applies to this exercise.)

5.3. (Finding a matrix representation)

For each of the following linear maps f_{v}, determine the matrix A_{v} representing f_{v}.
(a) $f_{1}: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto-3 x$.
(b) $f_{2}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}, \vec{x} \mapsto\left(x_{2}-x_{1}, x_{3}\right)$.
(c) $f_{3}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \vec{x} \mapsto\left(x_{1}-x_{3}, x_{2}, x_{1}, x_{1}+x_{3}\right)$.
(d) $f_{4}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \vec{x} \mapsto \vec{y}$, where the vector \vec{y} is determined from \vec{x} such that the following equation is satisfied for all t

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(x_{1}+x_{2} t+x_{3} t^{2}+x_{4} t^{3}\right)=y_{1}+y_{2} t+y_{3} t^{2}+y_{4} t^{3}
$$

5.4. (Composition of maps)

Consider the linear maps

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \vec{v} \mapsto\binom{v_{1}+2 v_{2}+v_{3}}{2 v_{2}+v_{3}}, \quad \text { and } \quad g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \vec{w} \mapsto\left(\begin{array}{c}
w_{1}-w_{2} \\
w_{2} / 2 \\
0
\end{array}\right)
$$

Compute the following:
(a) $(f \circ g)(\vec{w}):=f(g(\vec{w}))$, and $(g \circ f)(\vec{v}):=g(f(\vec{v}))$,
(b) the matrices A, B, C, D representing $f, g, f \circ g$ and $g \circ f$ respectively,
(c) the matrices $A B$ and $B A$.
(Hint: in (c) you ought to compute a "matrix-matrix product" which you probably already know how to do from some earlier maths course. If you do not, or simply feel a bit rusty with this, please consult the lecture notes; the figure in § 3.1.3 is all you need. The result you get in (c) should look very familar if you have solved (b).)

