Winter term 2022
Graz, 10.11.2022

6. exercise sheet for Mathematics for Advanced Materials Science

6.1. (Inverting matrices)
(4 credits)
Find the inverse matrix A^{-1} of

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
0 & 0 & 1
\end{array}\right) . \quad A^{-1}=\left(\begin{array}{ccc}
\square & \square \\
\square & \boxed{\square} \\
\square & \boxed{\square} \\
\square & \square & \square
\end{array}\right) .
$$

(Hint: there are several ways of doing this. For example, you may use the Gauß-Jordan algorithm from § 3.6.5 of the lecture notes. Alternatively, you may use Cramer's rule, Proposition 3.2. The final result will actually have all integer entries. You may check your answer by computing the matrix-matrix product $A^{-1} A$ and verifying that it equals the 3×3 identity matrix $\mathbf{1}_{3}$.)
6.2. (Finding certain linear maps)
(4 credits)
Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that the associated linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \vec{v} \mapsto A \vec{v}$, maps the parallelogram

$$
\square=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq \frac{12}{11} x-\frac{4}{11} y \leq 1,0 \leq \frac{16}{11} y-\frac{4}{11} x \leq 1\right\}
$$

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 17.11.2022, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-mams.html
onto the unit square $\square=[0,1] \times[0,1]$, i.e., $f(\square):=\{f(\vec{v}): \vec{v} \in \square\}=\square:$

(Hint: it may be easier to find a matrix $B \in \mathbb{R}^{2 \times 2}$ such that the associated linear map maps \square onto \square. One may then take $A=B^{-1}$. You can check your result easily on your own, by verifying that it maps the vertices of the parallelogram to the vertices of the square.)
6.3. (Volume of a parallelepiped)

Compute the volume of the parallelepiped

$$
\square:=\square(\vec{v}, \vec{w}, \vec{z}):=\left\{\lambda_{1} \vec{v}+\lambda_{2} \vec{w}+\lambda_{3} \vec{z}: 0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3} \leq 1\right\} .
$$

spanned by the vectors $\vec{v}=(1 / 5,1,0), \vec{w}=(1,1 / 5,0)$ and $\vec{z}=(1 / 2,0,1)$.

(Hint: you can use Cavalieri's principle, or you can simply compute an appropriate determinant. For more details, see § 3.2 in the lecture notes. The final answer should be slightly smaller than 1.)
6.4. (Computing determinants)

Compute the determinant of each of the following matrices:
(a) $\left(\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right)$,
(b) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 3 & 0\end{array}\right)$,
(c) $\left(\begin{array}{ccc}\cos (\varphi) \sin (\theta) & r \cos (\varphi) \cos (\theta) & -r \sin (\varphi) \sin (\theta) \\ \sin (\varphi) \sin (\theta) & r \sin (\varphi) \cos (\theta) & r \cos (\varphi) \sin (\theta) \\ \cos (\theta) & -r \sin (\theta) & 0\end{array}\right)$ for $r, \varphi, \theta \in \mathbb{R}$.
(Hint: see § 3.2 in the lecture notes. For (c), employ the identity $\cos (\varphi)^{2}+\sin (\varphi)^{2}=$ $|\exp (\mathrm{i} \varphi)|=1$ from Theorem 1.3. Your final result should only depend on r and θ and look very simple.)

