

Winter term 2022
Graz, 01.12.2022

9. exercise sheet for Mathematics for Advanced Materials Science

9.1. (Eigenvalues and eigenvectors, I)

Consider $(C, n) \in\{(A, 2),(B, 3)\}$, where A and B are the following matrices:

$$
A=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
0 & 3 & 1
\end{array}\right)
$$

For both choices of (C, n) do the following:
(a) determine the characteristic polynomial $\chi_{C}=\operatorname{det}\left(X \mathbf{1}_{n}-C\right)$ (here " X " should be treated like a variable; think of your favourite number, but do not plug it in),
(b) compute the eigenvalues of C ($=$ the numbers λ that yield zero when substituted for X in the polynomial χ_{C}) and all associated eigenvectors ($=$ the non-zero solutions $\vec{v} \in \mathbb{R}^{n}$ of $\left.\left(\lambda \mathbf{1}_{n}-C\right) \vec{v} \stackrel{!}{=} \overrightarrow{0}\right)$,
(c) and discern whether the matrix C is diagonalisable or not (i.e., decide whether you can choose eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ such that the matrix with these eigenvectors as columns has non-zero determinant).
(Hint: you can find some worked examples in § 3.5 of the lecture notes.)
9.2. (Eigenvalues and eigenvectors, II)

Consider the matrix $A \in \mathbb{R}^{2 \times 2}$ and the vectors $\vec{b}_{1}, \ldots, \vec{b}_{5} \in \mathbb{R}^{2}$ given below:

$$
A=\left(\begin{array}{cc}
11 & -12 \\
8 & -9
\end{array}\right), \quad \vec{b}_{1}=\binom{1}{1}, \quad \vec{b}_{2}=\binom{0}{0}, \quad \vec{b}_{3}=\binom{3}{1}, \quad \vec{b}_{4}=\binom{3}{2}, \quad \vec{b}_{5}=\binom{1}{0} .
$$

(a) For each vector $\vec{b}_{j}(j=1, \ldots, 5)$, check whether it is an eigenvector of A and, if it is, determine the corresponding eigenvalue.
(b) Let $B_{i j} \in \mathbb{R}^{2 \times 2}$ denote the matrix with columns \vec{b}_{i} and \vec{b}_{j}. Compute the matrix

$$
C_{i j}:=B_{i j}^{-1} A B_{i j}
$$

for all three pairs $(i, j) \in\{(1,3),(1,4),(3,5)\}$.
9.3. (Systems of linear differential equations)

In this exercise, you should apply linear algebra to solve a system of linear differential
equations. More precisely, the goal is to find two differentiable functions $x, y: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $t \in \mathbb{R}$

$$
\binom{\dot{x}(t)}{\dot{y}(t)} \stackrel{!}{=}\binom{x(t)+2 y(t)}{2 x(t)+y(t)}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x(t)}{y(t)}
$$

and

$$
x(0) \stackrel{!}{=} 1, \quad y(0) \stackrel{!}{=} 3
$$

(Here a dot above a function means the derivative with respect to t, that is, $\dot{x}(t)=x^{\prime}(t)$.)
(a) Compute the eigenvalues and associated eigenvectors of the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
(b) Find an invertible matrix $T \in \mathbb{R}^{2 \times 2}$ such that $D=T^{-1} A T$ is a diagonal matrix.
(c) Find differentiable functions $u, v: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $t \in \mathbb{R}$,

$$
\binom{\dot{u}(t)}{\dot{v}(t)} \stackrel{!}{=} D\binom{u(t)}{v(t)} .
$$

(Hint: try $t \mapsto \exp (\lambda t)$ for suitable λ.)
(d) Verify that $\binom{x(t)}{y(t)}:=T\binom{u(t)}{v(t)}$ satisfies (\dagger).
(e) Replace your solutions u and v found in (c) with scalar multiples of themselves in such a way that the solution to (\dagger) constructed in (d) also satisfies (\ddagger).
9.4. (Evaluation)

From today until December 15, you have the opportunity to evaluate the present course and provide feedback via TUGRAZonline. Please consider doing so.

