

10. exercise sheet for Mathematics for Advanced Materials Science

10.1. (Fourier series, I) (4 credits) Let $g: \mathbb{R} \to \mathbb{R}$ be the 1-periodic function defined by g(x) = x + 1/2 for |x| < 1/2 and g(1/2) = 1. (In particular, g(-1/2) = g(-1/2 + 1) = g(1/2) = 1.)

(a) Compute the Fourier coefficients $\hat{g}(k)$ of g for $k \in \mathbb{Z}$. (Hint: $\hat{g}(1) \approx -0.159i$, $\hat{g}(8) \approx 0.019894i$. The solution can *almost* be found in § 4.3 of the lecture notes.)

(b) Determine at which points g is represented by its Fourier series, i.e., for which $x \in \mathbb{R}$ does

$$g(x) = \sum_{k=-\infty}^{\infty} \hat{g}(k)e^{2\pi i k x}$$
? Answer: all $x \in$

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 12.01.2023, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-mams.html

10.2. (Fourier series, II)

(4 credits) Let $f : \mathbb{R} \to \mathbb{R}$ be the 1-periodic function defined by f(x) = (1-2|x|)x for $|x| \le 1/2$.

(a) Compute the Fourier coefficients $\hat{f}(k)$ of f for $k \in \mathbb{Z}$. (Hint: this is an exercise in partial integration and requires a bit of tenacity. You may use the following values to verify the validity of your final result: $\hat{f}(1) \approx -0.0645i$, $\hat{f}(-8) = 0 = \hat{f}(42)$.)

$$\hat{f}(0) =$$
 and $\hat{f}(k) =$ (for $k \neq 0$).

(b) Determine at which points f is represented by its Fourier series, i.e., for which $x \in \mathbb{R}$ does

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{2\pi i kx}$$
? Answer: all $x \in$

(c) Compute
$$1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \pm \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} =$$

(Hint: approximations do not count. Use (b) together with a suitably chosen value for x. At the end, you should arrive at a formula for the quantity in question that you can comfortably enter into a calculator. The answer approximately equals 0.9689.)

(4 credits)

10.3. (Fourier series, III)

Let $h: \mathbb{R} \to \mathbb{R}$ be the 1-periodic function defined by $h(x) = x^4 - 2x^3 + x^2$ for $0 \le x < 1$:

(a) Compute the Fourier coefficients $\hat{h}(k)$ of h for $k \in \mathbb{Z}$. (Hint: depending on how you go about doing this, this requires partial integration four times. You may check your final result using $\hat{h}(0) \approx 0.033$, $\hat{h}(1) \approx -0.015399$, $\hat{h}(1) \approx -0.015399, \, \hat{h}(-2) \approx -0.00096.)$

$$\hat{h}(0) =$$
 and $\hat{h}(k) =$ (for $k \neq 0$).

(b) Find complex numbers a_k and b_k such that

$$h(x) = \hat{h}(0) + \sum_{k=1}^{\infty} (a_k \cos(2\pi kx) + b_k \sin(2\pi kx))$$

holds for all $x \in \mathbb{R}$.

(Hint: exercise 3.2. Moreover, you can easily test your solution by replacing ∞ in the sum by 3 [the series in question converges rather quickly], plotting the resulting sum on [0, 1] and comparing with a plot of *h*. They should look almost identical.)

$$a_k =$$
 and $b_k =$

10.4. (*Shifting integral bounds for periodic functions*) (4 credits) This exercise should show that the integrals \int_0^1 and $\int_{-1/2}^{1/2}$ of 1-periodic integrands coincide. Fill in the gaps and select the correct statements.

The well-known rule for integration by ...

 $\bigcirc\,$ substitution; $\,\bigcirc\,$ parts; $\,\bigcirc\,$ Fourier analysis

states that for all continuous function $f:[a,b] \to \mathbb{R}$ and continuously differentiable $\varphi: \ldots$

$$\bigcirc \varphi: [a,b] \to [c,d] \text{ one has } \int_{a}^{b} f(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(\varphi(y))\varphi'(y) dy;$$
$$\bigcirc \varphi: [c,d] \to [a,b] \text{ one has } \int_{\varphi(c)}^{\varphi(d)} f(x) dx = \int_{c}^{d} f(\varphi(y))\varphi'(y) dy;$$
$$\bigcirc \varphi: [c,d] \to [a,b] \text{ one has } \int_{a}^{b} f(x)\varphi'(x) dx = \int_{\varphi(c)}^{\varphi(d)} f(\varphi(y)) dy;$$
$$\bigcirc \varphi: [c,d] \to [a,b] \text{ one has } \int_{\varphi(c)}^{\varphi(d)} f(\varphi(x)) dx = \int_{a}^{b} f(y)\varphi'(y) dy.$$

Upon using this with

one finds that
$$\int_{-1/2}^{0} f(x) dx = \int_{1/2}^{1} f(x-1) dx$$
. Therefore, one has

$$\int_{-1/2}^{1/2} f(x) dx = \int_{-1/2}^{0} f(x) dx + \int_{0}^{1/2} f(x) dx = \int_{1/2}^{1} f(x-1) dx + \int_{0}^{1/2} f(x) dx$$

$$= \int_{1/2}^{1} f(x) dx + \int_{0}^{1/2} f(x) dx = \int_{0}^{1} f(x) dx$$

for every continuous function $f:\mathbb{R}\to\mathbb{R}$ that is

 \bigcirc 1-periodic; \bigcirc 2-periodic; \bigcirc 1/2-periodic; \bigcirc constant.

(Hint: for the last part, multiple answers may be correct.)

Note: please observe the delayed deadline for submitting solutions due to the winter break.