11. exercise sheet for Mathematics for Advanced Materials Science

11.1. (3-periodic functions)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the 3-periodic function defined by $g(x)=1$ for $0 \leq x<3 / 2$ and $g(x)=0$ for $3 / 2 \leq x<3$:

(a) What are the values of r for which one might be interested in computing $\hat{g}(r)$? (Hint: " $r \in \mathbb{Z}$ " is a wrong answer. You should consult Example 4.9 from the lecture notes.)

(b) Compute the Fourier coefficients $\hat{g}(r)$ of g for r as in (a).
(Hint: because g is 3-periodic, but not 1-periodic, the Fourier coefficients are not given by $\int_{0}^{1} g(x) e^{-2 \pi i k x} \mathrm{~d} x$ which, incidentally, would be zero for all $k \neq 0$. Once you are done, you may compare your answer with the Fourier coefficients $\hat{\chi}(k)$ from Example 4.7. Moreover, you may check your result using $\hat{g}(3) \approx-0.1061 \mathrm{i}$.)

$$
\hat{g}(0)=\square \text { and } \hat{g}(r)=\square \quad(\text { for } r \neq 0)
$$

11.2. (Differentiation)

Consider the two maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(x y^{2}, \exp (x)\right)$, and $g: \mathbb{R}^{2} \rightarrow \mathbb{R},(v, w) \mapsto$ $v-w$. Compute the following:
(a) $(g \circ f)(x, y)$;
(b) the Jacobian matrices $J_{f}(x, y), J_{g}(v, w)$, and $J_{g \circ f}(x, y)$,
(c) the matrix-matrix product $J_{g}(f(x, y)) J_{f}(x, y)$.
(Hint: examples for computing the Jacobian matrices can be found in § 5.1.3.)
11.3. (Potentials)
(a) Find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\operatorname{grad} f(x, y)=\left(2 x y-1, x^{2}\right)$.
(b) Find a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\operatorname{grad} g(x, y)=(\sin (x-y)+x \cos (x-y),-x \cos (x-$ $y)$).
(Hint: the gradient of a function is defined in § 5.2 of the lecture notes. To solve this exercise, you just need to know the definition of the gradient, expand it, and see what this tells you about the functions f and g you need to find. Once you have f and g, it is also easy to check that your solution is correct; just compute the gradient.)
11.4. (Divergence)

Let $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(F_{1}(x, y), F_{2}(x, y)\right)$ be a vector field. Define the divergence $\operatorname{div} \vec{F}(x, y)$ of \vec{F} at (x, y) to be $\partial_{1} F_{1}(x, y)+\partial_{2} F_{2}(x, y)$ if the appearing partial derivatives exist. Compute $\operatorname{div} \operatorname{grad} f(x, y)$ and $\operatorname{div} \operatorname{grad} g(x, y)$, where f and g are the functions from exercise 11.3.
(Hint: here the main task is to decipher the notation. You can also consult § 6.1 of the lecture notes for a bit more information about the divergence, but you need none of this to solve the present exercise.)

