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12.1. (Differentiation) (4 credits)

Consider the two maps f : R2 → R2, (x , y) 7→ (x y, x − y), and g : R2 → R, (v, w) 7→
v2 + w2. Compute the following:

(a) (g ◦ f )(x , y);

(b) the Jacobian matrices J f (x , y), Jg(v, w), and Jg◦ f (x , y),

(c) the matrix–matrix product Jg( f (x , y))J f (x , y).

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

26.01.2023, 23:55 o’clock. https://tc.tugraz.at/main/course/view.php?id=3543

https://www.math.tugraz.at/∼mtechnau/teaching/2022-w-mams.html

https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2022-w-mams.html


12.2. (Gradient) (4 credits)

Consider the map f : R2→ R, (x , y) 7→ cos(x − y) + x y .

(a) Compute J f (x , y).

(b) Compute grad f (x , y).

(c) Pick three distinct points (x , y) ∈ [−3, 3] × [−2, 2] for which you compute the

gradient grad f (x , y) numerically and draw it as a vector based at (x , y) in the

following picture:
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(Hint: the curved lines are curves on which f is constant.)

12.3. (Polar coordinates, differentiation) (4 credits)

Consider the function

f : R2 \ {~0} → R, (x , y) 7→ 2x y

(x2 + y2)2
,

as well as the well-known polar coordinate map ~P : R2→ R2, (r,ϕ) 7→ (r cosϕ, r sinϕ).

Let ~v = (1/
p

2, 1/
p

2). Compute the following quantities.

(a) ∂1 f (x , y) = and ∂2 f (x , y) = .

(b)
∂ f

∂ ~v
(x , y) = . (Hint: Lemma 5.1)
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(c) ( f ◦ ~P)(r,ϕ) = .

(d)
∂ f

∂ r
(r,ϕ) = and

∂ f

∂ ϕ
(r,ϕ) = .

(Hint: this notation means ∂1( f ◦ ~P) and ∂2( f ◦ ~P).)

12.4. (Divergence) (4 credits)

Let ~F : R2 → R2, (x , y) 7→ (F1(x , y), F2(x , y)) be a vector field. Define the divergence

div ~F(x , y) of ~F at (x , y) to be ∂1F1(x , y)+∂2F2(x , y) if the appearing partial derivatives

exist. Compute div grad f (x , y) and div grad g(x , y), where f and g are the functions

from exercise 11.3, i.e., f (x , y) = x2 y − x + c f and g(x , y) = x sin(x − y) + cg , for

arbitrary constants c f , cg ∈ R.

(Hint: here the main task is to decipher the notation.)

3

mamsengimath.pdf{}{}{}#Item.8{}{}{}

