Winter term 2022
Graz, 19.01.2023

12. exercise sheet for Mathematics for Advanced Materials Science

(first name)

\square
\square
\square
\square
(last name)
(student id number)
12.1. (Differentiation)

Consider the two maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(x y, x-y)$, and $g: \mathbb{R}^{2} \rightarrow \mathbb{R},(v, w) \mapsto$ $v^{2}+w^{2}$. Compute the following:
(a) $(g \circ f)(x, y)$;
(b) the Jacobian matrices $J_{f}(x, y), J_{g}(v, w)$, and $J_{g \circ f}(x, y)$,
(c) the matrix-matrix product $J_{g}(f(x, y)) J_{f}(x, y)$.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 26.01.2023, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2022-w-mams.html
12.2. (Gradient)

Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto \cos (x-y)+x y$.
(a) Compute $J_{f}(x, y)$.
(b) Compute grad $f(x, y)$.
(c) Pick three distinct points $(x, y) \in[-3,3] \times[-2,2]$ for which you compute the gradient $\operatorname{grad} f(x, y)$ numerically and draw it as a vector based at (x, y) in the following picture:

(Hint: the curved lines are curves on which f is constant.)
12.3. (Polar coordinates, differentiation)

Consider the function

$$
f: \mathbb{R}^{2} \backslash\{\overrightarrow{0}\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

as well as the well-known polar coordinate map $\vec{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(r, \varphi) \mapsto(r \cos \varphi, r \sin \varphi)$. Let $\vec{v}=(1 / \sqrt{2}, 1 / \sqrt{2})$. Compute the following quantities.
(a) $\partial_{1} f(x, y)=\square$ and $\partial_{2} f(x, y)=\square$.
(b) $\frac{\partial f}{\partial \vec{v}}(x, y)=\square$.
(Hint: Lemma 5.1)
(c) $(f \circ \vec{P})(r, \varphi)=\square$.
(d) $\frac{\partial f}{\partial r}(r, \varphi)=\square$ and $\frac{\partial f}{\partial \varphi}(r, \varphi)=\square$.
(Hint: this notation means $\partial_{1}(f \circ \vec{P})$ and $\partial_{2}(f \circ \vec{P})$.)
12.4. (Divergence)
(4 credits)
Let $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(F_{1}(x, y), F_{2}(x, y)\right)$ be a vector field. Define the divergence $\operatorname{div} \vec{F}(x, y)$ of \vec{F} at (x, y) to be $\partial_{1} F_{1}(x, y)+\partial_{2} F_{2}(x, y)$ if the appearing partial derivatives exist. Compute $\operatorname{div} \operatorname{grad} f(x, y)$ and $\operatorname{div} \operatorname{grad} g(x, y)$, where f and g are the functions from exercise 11.3, i.e., $f(x, y)=x^{2} y-x+c_{f}$ and $g(x, y)=x \sin (x-y)+c_{g}$, for arbitrary constants $c_{f}, c_{g} \in \mathbb{R}$.
(Hint: here the main task is to decipher the notation.)

