

12. exercise sheet for Mathematics for Advanced Materials Science

12.1. (*Differentiation*)

(4 credits) Consider the two maps $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (xy, x - y)$, and $g: \mathbb{R}^2 \to \mathbb{R}$, $(v, w) \mapsto$ $v^2 + w^2$. Compute the following:

(a) $(g \circ f)(x, y);$

(b) the Jacobian matrices $J_f(x, y)$, $J_g(v, w)$, and $J_{g \circ f}(x, y)$,

(c) the matrix-matrix product $J_g(f(x, y))J_f(x, y)$.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 26.01.2023, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2022-w-mams.html

- 12.2. (Gradient)
 - Consider the map $f : \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto \cos(x y) + xy$. (a) Compute $J_f(x, y)$.

(4 credits)

- (b) Compute $\operatorname{grad} f(x, y)$.
- (c) Pick three distinct points $(x, y) \in [-3,3] \times [-2,2]$ for which you compute the gradient grad f(x, y) numerically and draw it as a vector based at (x, y) in the following picture:

(Hint: the curved lines are curves on which f is constant.)

12.3. (*Polar coordinates, differentiation*) Consider the function

$$f: \mathbb{R}^2 \setminus \{\vec{0}\} \to \mathbb{R}, \quad (x, y) \mapsto \frac{2xy}{(x^2 + y^2)^2},$$

as well as the well-known polar coordinate map $\vec{P} : \mathbb{R}^2 \to \mathbb{R}^2$, $(r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi)$. Let $\vec{v} = (1/\sqrt{2}, 1/\sqrt{2})$. Compute the following quantities.

(4 credits)

(Hint: this notation means $\partial_1(f \circ \vec{P})$ and $\partial_2(f \circ \vec{P})$.)

12.4. (Divergence)

(4 credits)

Let $\vec{F} : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (F_1(x, y), F_2(x, y))$ be a vector field. Define the *divergence* div $\vec{F}(x, y)$ of \vec{F} at (x, y) to be $\partial_1 F_1(x, y) + \partial_2 F_2(x, y)$ if the appearing partial derivatives exist. Compute div grad f(x, y) and div grad g(x, y), where f and g are the functions from exercise 11.3, i.e., $f(x, y) = x^2y - x + c_f$ and $g(x, y) = x \sin(x - y) + c_g$, for arbitrary constants $c_f, c_g \in \mathbb{R}$.

(Hint: here the main task is to decipher the notation.)