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1. exercise sheet for Engineering Mathematics

1.1. (Partial sums of the exponential function)

For n ∈ N and real x , consider Sn(x) =

n∑

k=0

1

k!
x k and recall that exp(x) =

∞∑

k=0

1

k!
x k.
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(a) Use a calculator to compute Sn(x) for all (n, x) with n= 0, 1, 2, 3, 4 and x = −1, 0.

(b) Also compute the difference exp(x)− Sn(x) for the above pairs (n, x).

1.2. (Geometric series and relatives)

Suppose that x is a real number such that |x |< 1. From the lecture you know that

∞∑

k=0

x k =
1

1− x
. (†)

(a) Differentiate both sides of (†) with respect to x to find a closed-form expression for

∞∑

k=0

kx k. (‡)

(You may assume that differentiation commutes with the formation of infinite series,

i.e., d
dx

∑∞
k=0

. . . =
∑∞

k=0

d
dx

. . .; this is not true in general, but when working with

power series it turns out to be fine, provided one stays away from the x for which

they diverge.)



(b) Use the above to evaluate (‡) for x = 1/3.

(If you get 15/4 for x = 3/5, then your answer to (a) is most likely correct.)

(c) Work as in (a) to find a closed-form expression for

∞∑

k=0

(k2 + k)x k.

1.3. (Power series “Ansatz” for differential equations)

Suppose that y : R→ R is a function which satisfies the differential equation y ′(x) = y(x)

for all x ∈ R and the “initial condition” y(0) = 2. Suppose further that y can be written

as a power series:

y(x) =

∞∑

n=0

an xn (for x ∈ R). (?)

(a) Find the numeric value of a0.

(b) As in exercise 1.2 (a), differentiate the power series in (?) term-wise and use the dif-

ferential equation for y to find a1 and a2. (Hint: as before, just compute with power

series as you would with polynomials; we ignore all issues regarding convergence

here. Moreover, you may use the fact that a power series equals the zero function

precisely if all its coefficients equal zero.)

(c) Continue your work from (b) to find an expression for an for all n ∈ N. Use this to

determine y in terms of known functions.
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