Winter term 2023
Graz, 04.10.2023

1. exercise sheet for Engineering Mathematics

1.1. (Partial sums of the exponential function)

For $n \in \mathbb{N}$ and real x, consider $S_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}$ and recall that $\exp (x)=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$.

(a) Use a calculator to compute $S_{n}(x)$ for all (n, x) with $n=0,1,2,3,4$ and $x=-1,0$.
(b) Also compute the difference $\exp (x)-S_{n}(x)$ for the above pairs (n, x).
1.2. (Geometric series and relatives)

Suppose that x is a real number such that $|x|<1$. From the lecture you know that

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \tag{†}
\end{equation*}
$$

(a) Differentiate both sides of (\dagger) with respect to x to find a closed-form expression for

$$
\begin{equation*}
\sum_{k=0}^{\infty} k x^{k} \tag{市}
\end{equation*}
$$

(You may assume that differentiation commutes with the formation of infinite series, i.e., $\frac{d}{d x} \sum_{k=0}^{\infty} \ldots=\sum_{k=0}^{\infty} \frac{d}{d x} \ldots$; this is not true in general, but when working with power series it turns out to be fine, provided one stays away from the x for which they diverge.)
(b) Use the above to evaluate (\ddagger) for $x=1 / 3$.
(If you get $15 / 4$ for $x=3 / 5$, then your answer to (a) is most likely correct.)
(c) Work as in (a) to find a closed-form expression for

$$
\sum_{k=0}^{\infty}\left(k^{2}+k\right) x^{k} .
$$

1.3. (Power series "Ansatz" for differential equations)

Suppose that $y: \mathbb{R} \rightarrow \mathbb{R}$ is a function which satisfies the differential equation $y^{\prime}(x)=y(x)$ for all $x \in \mathbb{R}$ and the "initial condition" $y(0)=2$. Suppose further that y can be written as a power series:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad(\text { for } x \in \mathbb{R})
$$

(a) Find the numeric value of a_{0}.
(b) As in exercise 1.2 (a), differentiate the power series in (\star) term-wise and use the differential equation for y to find a_{1} and a_{2}. (Hint: as before, just compute with power series as you would with polynomials; we ignore all issues regarding convergence here. Moreover, you may use the fact that a power series equals the zero function precisely if all its coefficients equal zero.)
(c) Continue your work from (b) to find an expression for a_{n} for all $n \in \mathbb{N}$. Use this to determine y in terms of known functions.

