

2. exercise sheet for Engineering Mathematics

(Hint: For the third part, use that $\cos' = -\sin$ and $\sin' = \cos$. Moreover, "arcsin" is the inverse function of the sine function restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. For computing its derivative, see how the derivative of arctan is computed at the end of § 0.6 of the lecture notes.)

2.2. (Integration)

Compute the following integrals:

Please submit your solutions during the next lecture (18.10.2023).

https://www.math.tugraz.at/~mtechnau/teaching/2023-w-engimaths.html

(4 credits)

(c)
$$\int_0^1 x^2 \exp(x) dx =$$
 .

(Please give *exact* values, and not approximations. For instance, do *not* write 0.6931 for log(2).)

Hint: All of the above exercises can be solved using the fundamental theorem of calculus. For (c) one would usually use a trick called "integration by parts"; see § 0.7.4 in the lecture notes If you do not know this trick, try to find $A, B, C \in \mathbb{R}$ such that $\frac{d}{dx}((A + Bx + Cx^2)\exp(x)) = x^2\exp(x)$ and then apply the fundamental theorem.

2.3. (Bessel's differential equation)

(4 credits)

Suppose that $y : \mathbb{R} \to \mathbb{R}$ is a non-zero solution to the differential equation

$$x^{2}y''(x) + xy'(x) + x^{2}y(x) \stackrel{!}{=} 0$$
 (for all $x \in \mathbb{R}$).

Suppose further that *y* can be written as a power series $y(x) = \sum_{n=0}^{\infty} a_n x^n$ with suitable coefficients a_0, a_1, \ldots . For the following tasks, please submit your solution on a separate sheet and *justify your computations*.

- (a) Work as in exercise 1.3 to derive a formula for a_n , n = 1, 2, 3, ... (Hint: "formula" is perhaps somewhat vague. Anyway, at the end you should be able to see that $a_1 = 0$ and $a_2 = 64^{-1}a_0$, for instance.)
- (b) Suppose that a₀ = 4 and consider the polynomial y₈(x) = ∑_{n=0}⁸ a_nxⁿ. (This polynomial approximates y for small x, but we will not make this precise.) Compute y₈(1). (Hint: if you can verify that y₈(2) = 43/48, then your answer for y₈(1) is likely correct. Moreover, please give the exact answer as a fraction, and not just a decimal approximation.)
- (c) Below one can see a plot of y, y_2 , y_4 and y_6 . Use a computer to generate a plot of y_8 on the interval [0,5] and sketch it in the figure below or attach a printout of that plot.

