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2.1. (Differentiation) (4 credits)

Compute the following derivatives:

(a)
d

dx

x2

x2
= ,

(b)
d

dx

x2
− 5

x2 + 1
= ,

(c)
d

dx
sin(cos(x)2) = ,

(d)
d

dx
arcsin(x) = .

(Hint: For the third part, use that cos′ = − sin and sin′ = cos. Moreover, “arcsin” is the

inverse function of the sine function restricted to (−π
2
, π

2
). For computing its derivative,

see how the derivative of arctan is computed at the end of § 0.6 of the lecture notes.)

2.2. (Integration) (4 credits)

Compute the following integrals:

(a)

∫ 3

1

�

x +
1

x
+

1

x2

�

dx = ,

(b)

∫ 1

−1

x sin(x2)dx = ,

Please submit your solutions during the next lecture (18.10.2023).

https://www.math.tugraz.at/∼mtechnau/teaching/2023-w-engimaths.html

https://www.math.tugraz.at/~mtechnau/teaching/2023-w-engimaths.html


(c)

∫ 1

0

x2 exp(x)dx = .

(Please give exact values, and not approximations. For instance, do not write 0.6931 for

log(2).)

Hint: All of the above exercises can be solved using the fundamental theorem of calculus.

For (c) one would usually use a trick called “integration by parts”; see § 0.7.4 in the

lecture notes If you do not know this trick, try to find A, B, C ∈ R such that d
dx
((A+ Bx +

C x2)exp(x)) = x2 exp(x) and then apply the fundamental theorem.

2.3. (Bessel’s differential equation) (4 credits)

Suppose that y : R→ R is a non-zero solution to the differential equation

x2 y ′′(x) + x y ′(x) + x2 y(x)
!
= 0 (for all x ∈ R).

Suppose further that y can be written as a power series y(x) =
∑

∞

n=0
an xn with suitable

coefficients a0, a1, . . . . For the following tasks, please submit your solution on a separate

sheet and justify your computations.

(a) Work as in exercise 1.3 to derive a formula for an, n= 1, 2, 3, . . . . (Hint: “formula” is

perhaps somewhat vague. Anyway, at the end you should be able to see that a1 = 0

and a2 = 64−1a0, for instance.)

(b) Suppose that a0 = 4 and consider the polynomial y8(x) =
∑8

n=0
an xn. (This poly-

nomial approximates y for small x , but we will not make this precise.) Compute

y8(1). (Hint: if you can verify that y8(2) = 43/48, then your answer for y8(1) is

likely correct. Moreover, please give the exact answer as a fraction, and not just a

decimal approximation.)

(c) Below one can see a plot of y , y2, y4 and y6 . Use a computer to generate a plot of

y8 on the interval [0, 5] and sketch it in the figure below or attach a printout of that

plot.
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