Marc Technau

2. exercise sheet for Engineering Mathematics

 (first name) (last name) (student id number)

2.1. (Differentiation)

Compute the following derivatives:
(a) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x^{2}}{x^{2}}=\square$,
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x^{2}-5}{x^{2}+1}=\square$,
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \sin \left(\cos (x)^{2}\right)=\square$,
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin (x)=\square$.
(Hint: For the third part, use that $\cos ^{\prime}=-\sin$ and $\sin ^{\prime}=\cos$. Moreover, "arcsin" is the inverse function of the sine function restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. For computing its derivative, see how the derivative of arctan is computed at the end of § 0.6 of the lecture notes.)
2.2. (Integration)

Compute the following integrals:
(a) $\int_{1}^{3}\left(x+\frac{1}{x}+\frac{1}{x^{2}}\right) \mathrm{d} x=\square$,
(b) $\int_{-1}^{1} x \sin \left(x^{2}\right) \mathrm{d} x=\square$,

[^0](c) $\int_{0}^{1} x^{2} \exp (x) \mathrm{d} x=\square$.
(Please give exact values, and not approximations. For instance, do not write 0.6931 for $\log (2)$.)
Hint: All of the above exercises can be solved using the fundamental theorem of calculus. For (c) one would usually use a trick called "integration by parts"; see § 0.7.4 in the lecture notes If you do not know this trick, try to find $A, B, C \in \mathbb{R}$ such that $\frac{\mathrm{d}}{\mathrm{d} x}((A+B x+$ $\left.\left.C x^{2}\right) \exp (x)\right)=x^{2} \exp (x)$ and then apply the fundamental theorem.
2.3. (Bessel's differential equation)
(4 credits)
Suppose that $y: \mathbb{R} \rightarrow \mathbb{R}$ is a non-zero solution to the differential equation
$$
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+x^{2} y(x) \stackrel{!}{=} 0 \quad(\text { for all } x \in \mathbb{R})
$$

Suppose further that y can be written as a power series $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with suitable coefficients a_{0}, a_{1}, \ldots. For the following tasks, please submit your solution on a separate sheet and justify your computations.
(a) Work as in exercise 1.3 to derive a formula for $a_{n}, n=1,2,3, \ldots$. (Hint: "formula" is perhaps somewhat vague. Anyway, at the end you should be able to see that $a_{1}=0$ and $a_{2}=64^{-1} a_{0}$, for instance.)
(b) Suppose that $a_{0}=4$ and consider the polynomial $y_{8}(x)=\sum_{n=0}^{8} a_{n} x^{n}$. (This polynomial approximates y for small x, but we will not make this precise.) Compute $y_{8}(1)$. (Hint: if you can verify that $y_{8}(2)=43 / 48$, then your answer for $y_{8}(1)$ is likely correct. Moreover, please give the exact answer as a fraction, and not just a decimal approximation.)
(c) Below one can see a plot of y, y_{2}, y_{4} and y_{6}. Use a computer to generate a plot of y_{8} on the interval $[0,5]$ and sketch it in the figure below or attach a printout of that plot.

[^0]: Please submit your solutions during the next lecture (18.10.2023).
 https://www.math.tugraz.at/~mtechnau/teaching/2023-w-engimaths.html

