5. exercise sheet for Engineering Mathematics

5.1. (Inverting matrices)

Find the inverse matrix A^{-1} of

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

(Hint: there are several ways of doing this. For example, you may use the Gauß-Jordan algorithm from § 3.6 .5 of the lecture notes. Alternatively, you may use Cramer's rule, Proposition 3.2.)
5.2. (Volume of a parallelepiped)

Compute the volume of the parallelepiped

$$
\square:=\square(\vec{v}, \vec{w}, \vec{z}):=\left\{\lambda_{1} \vec{v}+\lambda_{2} \vec{w}+\lambda_{3} \vec{z}: 0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3} \leq 1\right\} .
$$

spanned by the vectors $\vec{v}=(1 / 5,1,0), \vec{w}=(1,1 / 5,0)$ and $\vec{z}=(1 / 2,0,1)$.

(Hint: you can use Cavalieri's principle, or you can simply compute the determinant of an appropriate 3×3-matrix.)
5.3. (Computing determinants)

Compute the determinant of each of the following matrices:
(a) $\left(\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right)$,
(b) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 0\end{array}\right)$,
(c) $\left(\begin{array}{ccc}\cos (\varphi) \sin (\theta) & r \cos (\varphi) \cos (\theta) & -r \sin (\varphi) \sin (\theta) \\ \sin (\varphi) \sin (\theta) & r \sin (\varphi) \cos (\theta) & r \cos (\varphi) \sin (\theta) \\ \cos (\theta) & -r \sin (\theta) & 0\end{array}\right)$ for $r, \varphi, \theta \in \mathbb{R}$.
(Hint: for (c), employ the identity $\cos (\varphi)^{2}+\sin (\varphi)^{2}=1$. Your final result should only depend on r and θ and look very simple.)

