

5. exercise sheet for Engineering Mathematics

5.1. (Inverting matrices)

Find the inverse matrix A^{-1} of

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

(Hint: there are several ways of doing this. For example, you may use the Gauß–Jordan algorithm from § 3.6.5 of the lecture notes. Alternatively, you may use Cramer's rule, Proposition 3.2.)

5.2. (Volume of a parallelepiped)

Compute the volume of the parallelepiped

spanned by the vectors $\vec{v} = (1/5, 1, 0)$, $\vec{w} = (1, 1/5, 0)$ and $\vec{z} = (1/2, 0, 1)$.

$$volume(\triangle) = volume \begin{pmatrix} \vec{e}_3 \\ \vdots \\ \vec{e}_2 \\ \vdots \\ \vec{e}_1 \end{pmatrix}.$$

(Hint: you can use Cavalieri's principle, or you can simply compute the determinant of an appropriate 3×3 -matrix.)

5.3. (Computing determinants)

Compute the determinant of each of the following matrices:

(a)
$$\begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix}$$
,

(b)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 0 \end{pmatrix},$$

(c)
$$\begin{pmatrix} \cos(\varphi)\sin(\theta) & r\cos(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) & r\cos(\varphi)\sin(\theta) \\ \cos(\theta) & -r\sin(\theta) & 0 \end{pmatrix} \text{for } r, \varphi, \theta \in \mathbb{R}.$$

(Hint: for (c), employ the identity $\cos(\varphi)^2 + \sin(\varphi)^2 = 1$. Your final result should only depend on r and θ and look very simple.)