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6.1. (Determinants and areas) (4 credits)

Consider the shape T enclosed by connecting the following 20 points ~x in their given

order with line segments and connecting back to the starting point:

(0.970, 0.979), (0.200, 0.974),

(0.200, 2.552), (1.765, 2.552),

(1.765, 1.773), (1.917, 1.773),

(1.917, 2.552), (2.857, 2.552),

(2.857, 3.326), (4.430, 3.326),

(4.430, 2.552), (5.200, 2.552),

(5.200, 0.974), (3.643, 0.979),

(3.643, 1.749), (3.491, 1.749),

(3.491, 0.979), (2.548, 0.974),

(2.543, 0.200), (0.970, 0.200).1 2 3 4 5 6 7 8 9
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(T is the hatched region drawn above.) Let A be the matrix

�

1 1.5

−0.5 1

�

. Let T ′ be

the shape obtained by repeating the above construction of T , but with each of the above

points ~x replaced by A~x .

(a) Sketch T ′ in the above coordinate system.

(Hint: to get a reasonably accurate figure, you need only compute A~x for three

choices of ~x , and certainly not all 20. Do not try to be accurate to every millime-

tre, but do try to produce an adequate sketch. Please use a ruler, but do not invest

more than 10 minutes on the drawing itself.)

Please submit your solutions during the next lecture (22.11.2023).

https://www.math.tugraz.at/∼mtechnau/teaching/2023-w-engimaths.html

https://www.math.tugraz.at/~mtechnau/teaching/2023-w-engimaths.html


(b) Suppose that you knew that the area of T equals 10.0826 (approximately). Find the

area of T ′.

area(T ′) = .

(Hint: recall § 3.2.5 from the lecture notes. Again, the computational effort here

should be rather low and should certainly not involve computing all of the points

A~x .)

6.2. (Finding certain linear maps) (4 credits)

Find a matrix A∈ R2×2 such that the associated linear map f : R2→ R2, ~v 7→ A~v, maps the

parallelogram

= { (x , y) ∈ R2 : 0≤ 6
7
x + 2

7
y ≤ 1, 0≤ 8

7
y − 4

7
x ≤ 1 }

onto the unit square � = [0, 1]× [0, 1], i.e., f ( ) := { f (~v) : ~v ∈ }= �:

A=
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(Hint: it may be easier to find a matrix B ∈ R2×2 such that the associated linear map maps

� onto . One may then take A= B−1.)

6.3. (Gram determinants) (4 credits)

Consider the matrix A=

�

−2

1

�

∈ R2×1 and the associated linear map f : R1→ R2, v 7→ Av.

(a) Sketch the image im f = { f (v) : v ∈ R } ⊆ R2 of f below.

(b) In your above sketch, mark the part of im f that is { f (v) : 0≤ v ≤ 1 } and determine

its length L.

(c) Compute
p

det(ATA) and
p

det(AAT).

−3 −2 −1 1 2 3

−2

−1

1

2

3
(b) Length L = .

(c)
Æ

det(ATA) = ,

Æ

det(AAT) = .

2



6.4. (Gram determinants) (4 credits)

The following exercise illustrates how one may use linear algebra to find curves to data

(see § 3.2.6 of the lecture notes for more background information, but reading it is not

strictly necessary for solving this exercise). Consider the matrix A and the vector ~b given

below:

A=







1 −1

1 0

1 2

1 4





 ∈ R
4×2, ~b =







1

11/12

1

11/4





 ∈ R
4.

(a) Solve the system of linear equations ATA~x
!
= AT~b for ~x = (x1, x2) ∈ R

2.

x1 = , x2 = .

(b) With your solution ~x from above, sketch the graph of the affine map f : R → R,

t 7→ x1 + x2 t, below:

−1 1 2 3 4

1

2

3

(The black points are

(−1, 1), (0, 11/12),

(2,1) and (4,11/4).)

(c) Using the function f from the previous exercise, compute

E f := (1− f (−1))2 + (11/12− f (0))2 + (1− f (2))2 + (11/4− f (4))2. (?)

E f = .

(Hint: the final solution may look slightly ugly, but it is roughly 0.7.)

(d) Pick a vector (y1, y2) ∈ R
2 other than ~x and compute the quantity in (?) with f

replaced by g : R→ R, t 7→ y1 + y2 t. Also sketch the graph of g in the figure in (b).

Eg = .
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