Marc Technau

6. exercise sheet for Engineering Mathematics

(first name)
(last name)
(student id number)

6.1. (Determinants and areas)

(4 credits)
Consider the shape \mathscr{T} enclosed by connecting the following 20 points \vec{x} in their given order with line segments and connecting back to the starting point:

$(0.970,0.979)$,	$(0.200,0.974)$,
$(0.200,2.552)$,	$(1.765,2.552)$,
$(1.765,1.773)$,	$(1.917,1.773)$,
$(1.917,2.552)$,	$(2.857,2.552)$,
$(2.857,3.326)$,	$(4.430,3.326)$,
$(4.430,2.552)$,	$(5.200,2.552)$,
$(3.200,0.974)$,	$(3.643,0.979)$,
$(3.643,1.749)$,	$(3.491,1.749)$,
$(2.543,0.200)$,	$(0.970,0.200)$,

(\mathscr{T} is the hatched region drawn above.) Let A be the matrix $\left(\begin{array}{cc}1 & 1.5 \\ -0.5 & 1\end{array}\right)$. Let \mathscr{T}^{\prime} be the shape obtained by repeating the above construction of \mathscr{T}, but with each of the above points \vec{x} replaced by $A \vec{x}$.
(a) Sketch \mathscr{T}^{\prime} in the above coordinate system.
(Hint: to get a reasonably accurate figure, you need only compute $A \vec{x}$ for three choices of \vec{x}, and certainly not all 20 . Do not try to be accurate to every millimetre, but do try to produce an adequate sketch. Please use a ruler, but do not invest more than 10 minutes on the drawing itself.)

[^0](b) Suppose that you knew that the area of \mathscr{T} equals 10.0826 (approximately). Find the area of \mathscr{T}^{\prime}.
$$
\operatorname{area}\left(\mathscr{T}^{\prime}\right)=\square
$$
(Hint: recall § 3.2.5 from the lecture notes. Again, the computational effort here should be rather low and should certainly not involve computing all of the points $A \vec{x}$.)
6.2. (Finding certain linear maps)
(4 credits)
Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that the associated linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \vec{v} \mapsto A \vec{v}$, maps the parallelogram
$$
\square=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq \frac{6}{7} x+\frac{2}{7} y \leq 1,0 \leq \frac{8}{7} y-\frac{4}{7} x \leq 1\right\}
$$
onto the unit square $\square=[0,1] \times[0,1]$, i.e., $f(\square):=\{f(\vec{v}): \vec{v} \in \square\}=\square$:

(Hint: it may be easier to find a matrix $B \in \mathbb{R}^{2 \times 2}$ such that the associated linear map maps \square onto \square. One may then take $A=B^{-1}$.)
6.3. (Gram determinants)

Consider the matrix $A=\binom{-2}{1} \in \mathbb{R}^{2 \times 1}$ and the associated linear map $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}, v \mapsto A v$.
(a) Sketch the image $\operatorname{im} f=\{f(v): v \in \mathbb{R}\} \subseteq \mathbb{R}^{2}$ of f below.
(b) In your above sketch, mark the part of $\operatorname{im} f$ that is $\{f(v): 0 \leq v \leq 1\}$ and determine its length L.
(c) Compute $\sqrt{\operatorname{det}\left(A^{\mathrm{T}} A\right)}$ and $\sqrt{\operatorname{det}\left(A A^{\mathrm{T}}\right)}$.

(b) Length $L=\square$.
(c) $\sqrt{\operatorname{det}\left(A^{\mathrm{T}} A\right)}=\square$,
$\sqrt{\operatorname{det}\left(A A^{\mathrm{T}}\right)}=\square$.
6.4. (Gram determinants)
(4 credits)
The following exercise illustrates how one may use linear algebra to find curves to data (see §3.2.6 of the lecture notes for more background information, but reading it is not strictly necessary for solving this exercise). Consider the matrix A and the vector \vec{b} given below:

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 2 \\
1 & 4
\end{array}\right) \in \mathbb{R}^{4 \times 2}, \quad \vec{b}=\left(\begin{array}{c}
1 \\
11 / 12 \\
1 \\
11 / 4
\end{array}\right) \in \mathbb{R}^{4}
$$

(a) Solve the system of linear equations $A^{\mathrm{T}} A \vec{x} \stackrel{!}{=} A^{\mathrm{T}} \vec{b}$ for $\vec{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.

(b) With your solution \vec{x} from above, sketch the graph of the affine map $f: \mathbb{R} \rightarrow \mathbb{R}$, $t \mapsto x_{1}+x_{2} t$, below:

(c) Using the function f from the previous exercise, compute

$$
\begin{gathered}
\mathscr{E}_{f}:=(1-f(-1))^{2}+(11 / 12-f(0))^{2}+(1-f(2))^{2}+(11 / 4-f(4))^{2} . \\
\mathscr{E}_{f}=\square
\end{gathered}
$$

(Hint: the final solution may look slightly ugly, but it is roughly 0.7.)
(d) Pick a vector $\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ other than \vec{x} and compute the quantity in (\star) with f replaced by $g: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto y_{1}+y_{2} t$. Also sketch the graph of g in the figure in (b).

$$
\mathscr{E}_{g}=\square
$$

[^0]: Please submit your solutions during the next lecture (22.11.2023).
 https://www.math.tugraz.at/~mtechnau/teaching/2023-w-engimaths.html

