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9. exercise sheet for Engineering Mathematics

9.1. (Systems of linear differential equations)

In this exercise, you should apply linear algebra to solve a system of linear differential

equations. More precisely, the goal is to find two differentiable functions x , y: R → R

such that for all t ∈ R
�

ẋ(t)

ẏ(t)

�

!
=

�

x(t) + 2y(t)

2x(t) + y(t)

�

=

�

1 2

2 1

��

x(t)

y(t)

�

, (†)

and

x(0)
!
= 1, y(0)

!
= 3. (‡)

(Here a dot above a function means the derivative with respect to t, that is, ẋ(t) = x ′(t).)

The idea is to use eigenvalue theory in order to “decouple” the two dimensions inherent

to the above problem, and pass to two one-dimensional problems, whose solution is much

easier.

(a) Compute the eigenvalues and associated eigenvectors of the matrix A=

�

1 2

2 1

�

.

(b) Find an invertible matrix T ∈ R2×2 such that D = T−1AT is a diagonal matrix.

(c) Find non-constant differentiable functions u, v: R→ R such that, for all t ∈ R,

�

u̇(t)

v̇(t)

�

!
= D

�

u(t)

v(t)

�

.

(Hint: try t 7→ exp(λt) and choose λ suitably.)

(d) Verify that

�

x(t)

y(t)

�

:= T

�

u(t)

v(t)

�

satisfies (†).

(e) Replace your solutions u and v found in (c) with scalar multiples of themselves in

such a way that the solution to (†) constructed in (d) also satisfies (‡).

(Hint: you can verify your solution using (x(1), y(1))≈ (39.803,40.539).)

9.2. (Diagonalising a symmetric matrix)

Consider the symmetric matrix

A=





1 2 −4

2 1 4

−4 4 −5



.



(a) Find all eigenvalues of A. (Hint: consider the characteristic polynomial of A. One of

its roots is −9. Use this to find all roots of the characteristic polynomial.)

(b) In (a) you should have seen that A has exactly two eigenvalues: −9 and some λ ̸=

−9. Find two eigenvectors v⃗, w⃗ for the eigenvalue λ and one eigenvector z⃗ for the

eigenvalue −9 of A such that the matrix

T =





| | |

v⃗ w⃗ z⃗

| | |





is invertible. (Hint: in the present scenario, for the desired invertibility, it suffices to

choose the w⃗ in such a way that it is not a scalar multiple of v⃗.)

(c) Compute T−1AT . (Hint: the result should be a diagonal matrix.)

(d) Verify that v⃗ • z⃗ = 0 and w⃗ • z⃗ = 0, that is, z⃗ is perpendicular to v⃗ and w⃗. Moreover

compute v⃗ • w⃗.

(e) If in (d), you got v⃗ • w⃗ ̸= 0, then find µ ∈ R such that w⃗′ = w⃗−µv⃗ satisfies v⃗ • w⃗′ = 0.

Verify that the matrix T ′ defined like T , but with the column w⃗ replaced by w⃗′ satisfies

(T ′)A(T ′)−1 = T−1AT . (Hint: getting v⃗ • w⃗= 0 in (d) right away is definitely possible

and depends on your own choice of v⃗ and w⃗. If this happens to you, then you have

nothing to do in (e).)

Remark: the above tasks are supposed to give a glimpse how one would diagonalise A

using an orthogonal matrix (in the sense of exercise 7.3). The outcome of (e) (if solved

correctly) is essentially such a matrix: (T ′)TT ′ equals a diagonal matrix and by rescaling

the columns of T one can arrange for this diagonal matrix to be equal to the 3×3-identity

matrix 13.

9.3. (Differentiation)

Consider the two maps f : R2 → R2, (x , y) 7→ (x y2, exp(x)), and g: R2 → R, (v, w) 7→

v − w. Compute the following:

(a) (g ◦ f )(x , y);

(b) the Jacobian matrices J f (x , y), Jg(v, w), and Jg◦ f (x , y),

(c) the matrix–matrix product Jg( f (x , y))J f (x , y).

(Hint: examples for computing the Jacobian matrices can be found in § 5.1.3. You may

verify your answer using Jg◦ f (2, 3)≈ (1.61 12) ∈ R1×2.)
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