

9. exercise sheet for Engineering Mathematics

9.1. (*Systems of linear differential equations*) In this exercise, you should apply linear algebra to solve a system of linear differential equations. More precisely, the goal is to find two differentiable functions $x, y: \mathbb{R} \to \mathbb{R}$ such that for all $t \in \mathbb{R}$

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} x(t) + 2y(t) \\ 2x(t) + y(t) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix},$$
 (†)

and

$$x(0) \stackrel{!}{=} 1, \quad y(0) \stackrel{!}{=} 3.$$
 (‡)

(Here a dot above a function means the derivative with respect to t, that is, $\dot{x}(t) = x'(t)$.) The idea is to use eigenvalue theory in order to "decouple" the two dimensions inherent to the above problem, and pass to two one-dimensional problems, whose solution is much easier.

- (a) Compute the eigenvalues and associated eigenvectors of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- (b) Find an invertible matrix $T \in \mathbb{R}^{2 \times 2}$ such that $D = T^{-1}AT$ is a diagonal matrix.
- (c) Find non-constant differentiable functions $u, v \colon \mathbb{R} \to \mathbb{R}$ such that, for all $t \in \mathbb{R}$,

$$\begin{pmatrix} \dot{u}(t) \\ \dot{v}(t) \end{pmatrix} \stackrel{!}{=} D \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}.$$

(Hint: try $t \mapsto \exp(\lambda t)$ and choose λ suitably.)

- (d) Verify that $\binom{x(t)}{y(t)} \coloneqq T\binom{u(t)}{v(t)}$ satisfies (†).
- (e) Replace your solutions *u* and *v* found in (c) with scalar multiples of themselves in such a way that the solution to (†) constructed in (d) also satisfies (‡).
 (Hint: you can verify your solution using (x(1), y(1)) ≈ (39.803, 40.539).)
- **9.2.** (*Diagonalising a symmetric matrix*) Consider the symmetric matrix

$$A = \begin{pmatrix} 1 & 2 & -4 \\ 2 & 1 & 4 \\ -4 & 4 & -5 \end{pmatrix}.$$

- (a) Find all eigenvalues of *A*. (Hint: consider the characteristic polynomial of *A*. One of its roots is -9. Use this to find all roots of the characteristic polynomial.)
- (b) In (a) you should have seen that A has exactly two eigenvalues: −9 and some λ ≠ −9. Find *two* eigenvectors v, w for the eigenvalue λ and one eigenvector z for the eigenvalue −9 of A such that the matrix

$$T = \begin{pmatrix} | & | & | \\ \vec{v} & \vec{w} & \vec{z} \\ | & | & | \end{pmatrix}$$

is invertible. (Hint: in the present scenario, for the desired invertibility, it suffices to choose the \vec{w} in such a way that it is not a scalar multiple of \vec{v} .)

- (c) Compute $T^{-1}AT$. (Hint: the result should be a diagonal matrix.)
- (d) Verify that $\vec{v} \cdot \vec{z} = 0$ and $\vec{w} \cdot \vec{z} = 0$, that is, \vec{z} is perpendicular to \vec{v} and \vec{w} . Moreover compute $\vec{v} \cdot \vec{w}$.
- (e) If in (d), you got v w ≠ 0, then find µ ∈ ℝ such that w' = w − µv satisfies v w' = 0. Verify that the matrix T' defined like T, but with the column w replaced by w' satisfies (T')A(T')⁻¹ = T⁻¹AT. (Hint: getting v w = 0 in (d) right away is definitely possible and depends on your own choice of v and w. If this happens to you, then you have nothing to do in (e).)

Remark: the above tasks are supposed to give a glimpse how one would diagonalise *A* using an orthogonal matrix (in the sense of exercise 7.3). The outcome of (e) (if solved correctly) is essentially such a matrix: $(T')^T T'$ equals a diagonal matrix and by rescaling the columns of *T* one can arrange for this diagonal matrix to be equal to the 3×3-identity matrix $\mathbf{1}_3$.

9.3. (Differentiation)

Consider the two maps $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (xy^2, \exp(x))$, and $g: \mathbb{R}^2 \to \mathbb{R}$, $(v, w) \mapsto v - w$. Compute the following:

- (a) $(g \circ f)(x, y);$
- (b) the Jacobian matrices $J_f(x, y)$, $J_g(v, w)$, and $J_{gof}(x, y)$,
- (c) the matrix-matrix product $J_g(f(x, y))J_f(x, y)$.

(Hint: examples for computing the Jacobian matrices can be found in § 5.1.3. You may verify your answer using $J_{gof}(2,3) \approx (1.61 \ 12) \in \mathbb{R}^{1 \times 2}$.)