

Winter term 2023
Graz, 06.12.2023

9. exercise sheet for Engineering Mathematics

9.1. (Systems of linear differential equations)

In this exercise, you should apply linear algebra to solve a system of linear differential equations. More precisely, the goal is to find two differentiable functions $x, y: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $t \in \mathbb{R}$

$$
\binom{\dot{x}(t)}{\dot{y}(t)} \stackrel{!}{=}\binom{x(t)+2 y(t)}{2 x(t)+y(t)}=\left(\begin{array}{ll}
1 & 2 \tag{†}\\
2 & 1
\end{array}\right)\binom{x(t)}{y(t)},
$$

and

$$
x(0) \stackrel{!}{=} 1, \quad y(0) \stackrel{!}{=} 3
$$

(Here a dot above a function means the derivative with respect to t, that is, $\dot{x}(t)=x^{\prime}(t)$.) The idea is to use eigenvalue theory in order to "decouple" the two dimensions inherent to the above problem, and pass to two one-dimensional problems, whose solution is much easier.
(a) Compute the eigenvalues and associated eigenvectors of the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
(b) Find an invertible matrix $T \in \mathbb{R}^{2 \times 2}$ such that $D=T^{-1} A T$ is a diagonal matrix.
(c) Find non-constant differentiable functions $u, v: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $t \in \mathbb{R}$,

$$
\binom{\dot{u}(t)}{\dot{v}(t)} \stackrel{!}{=} D\binom{u(t)}{v(t)} .
$$

(Hint: try $t \mapsto \exp (\lambda t)$ and choose λ suitably.)
(d) Verify that $\binom{x(t)}{y(t)}:=T\binom{u(t)}{v(t)}$ satisfies (\dagger).
(e) Replace your solutions u and v found in (c) with scalar multiples of themselves in such a way that the solution to (\dagger) constructed in (d) also satisfies (\ddagger).
(Hint: you can verify your solution using $(x(1), y(1)) \approx(39.803,40.539)$.)
9.2. (Diagonalising a symmetric matrix)

Consider the symmetric matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
2 & 1 & 4 \\
-4 & 4 & -5
\end{array}\right)
$$

(a) Find all eigenvalues of A. (Hint: consider the characteristic polynomial of A. One of its roots is -9 . Use this to find all roots of the characteristic polynomial.)
(b) In (a) you should have seen that A has exactly two eigenvalues: -9 and some $\lambda \neq$ -9 . Find two eigenvectors \vec{v}, \vec{w} for the eigenvalue λ and one eigenvector \vec{z} for the eigenvalue -9 of A such that the matrix

$$
T=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{v} & \vec{w} & \vec{z} \\
\mid & \mid & \mid
\end{array}\right)
$$

is invertible. (Hint: in the present scenario, for the desired invertibility, it suffices to choose the \vec{w} in such a way that it is not a scalar multiple of \vec{v}.)
(c) Compute $T^{-1} A T$. (Hint: the result should be a diagonal matrix.)
(d) Verify that $\vec{v} \cdot \vec{z}=0$ and $\vec{w} \cdot \vec{z}=0$, that is, \vec{z} is perpendicular to \vec{v} and \vec{w}. Moreover compute $\vec{v} \cdot \vec{w}$.
(e) If in (d), you got $\vec{v} \cdot \vec{w} \neq 0$, then find $\mu \in \mathbb{R}$ such that $\vec{w}^{\prime}=\vec{w}-\mu \vec{v}$ satisfies $\vec{v} \cdot \vec{w}^{\prime}=0$. Verify that the matrix T^{\prime} defined like T, but with the column \vec{w} replaced by \vec{w}^{\prime} satisfies $\left(T^{\prime}\right) A\left(T^{\prime}\right)^{-1}=T^{-1} A T$. (Hint: getting $\vec{v} \cdot \vec{w}=0$ in (d) right away is definitely possible and depends on your own choice of \vec{v} and \vec{w}. If this happens to you, then you have nothing to do in (e).)
Remark: the above tasks are supposed to give a glimpse how one would diagonalise A using an orthogonal matrix (in the sense of exercise 7.3). The outcome of (e) (if solved correctly) is essentially such a matrix: $\left(T^{\prime}\right)^{\mathrm{T}} T^{\prime}$ equals a diagonal matrix and by rescaling the columns of T one can arrange for this diagonal matrix to be equal to the 3×3-identity matrix $\mathbf{1}_{3}$.

9.3. (Differentiation)

Consider the two maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(x y^{2}, \exp (x)\right)$, and $g: \mathbb{R}^{2} \rightarrow \mathbb{R},(v, w) \mapsto$ $v-w$. Compute the following:
(a) $(g \circ f)(x, y)$;
(b) the Jacobian matrices $J_{f}(x, y), J_{g}(v, w)$, and $J_{g \circ f}(x, y)$,
(c) the matrix-matrix product $J_{g}(f(x, y)) J_{f}(x, y)$.
(Hint: examples for computing the Jacobian matrices can be found in § 5.1.3. You may verify your answer using $J_{g \circ f}(2,3) \approx\left(\begin{array}{ll}1.61 & 12)\end{array} \in \mathbb{R}^{1 \times 2}\right.$.)

