

10. exercise sheet for Engineering Mathematics

10.2. (Gradient)

Consider the map $f: \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto \cos(x - y) - xy^2$.

(4 credits)

(a) Compute $J_f(x, y) \in \mathbb{R}^{1 \times 2}$.

(b) Compute grad $f(x, y) \in \mathbb{R}^2$. (Hint: for verification: grad $f(1, 10) \approx (-99.588, -20.412)$.)

(c) Pick three distinct points $(x, y) \in [-3, 3] \times [-2, 2]$ for which you compute the gradient grad f(x, y) numerically and draw it as a vector based at (x, y) in the following picture:

(Hint: the curved lines are curves on which f is constant. For (c) make sure that the vectors you draw have the correct length and orientation.)

10.3. (*Divergence*)

(4 credits)

Let $\vec{F} : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (F_1(x, y), F_2(x, y))$ be a vector field. Define the *divergence* div $\vec{F}(x, y)$ of \vec{F} at (x, y) to be $\partial_1 F_1(x, y) + \partial_2 F_2(x, y)$ if the appearing partial derivatives exist. Compute div grad $(xy + y^2 - x)$.

(Hint: here the main task is to decipher the notation.)

div grad
$$f(x, y) =$$

10.4. (*Start-up of laminar flow in a tube, I*)

Let $\phi: [-1,1] \times \mathbb{R}_{>0} \to \mathbb{R}$ be a (the) function satisfying the *partial differential equation*

$$\frac{\partial \phi}{\partial \tau}(\xi,\tau) = 4 + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left(\xi \frac{\partial \phi}{\partial \xi}(\xi,\tau)\right) \tag{(∂)}$$

(4 credits)

at all points $(\xi, \tau) \in (-1, 1) \times \mathbb{R}, \xi \neq 0$, and the boundary conditions

$$\phi(\pm 1, \tau) = 0 \quad \text{for } \tau \ge 0, \tag{(\dagger)}$$

$$\phi(\xi, 0) = 0 \text{ for } \xi \in [-1, 1].$$
 (‡)

(Provided suitable physical assumptions which we do not explicate here, the function ϕ can be used to model the velocity profile of laminar flow building up from a fluid in a circular tube, initially at rest (imposed by (‡)), with a pressure gradient applied at the ends of the tube at time $\tau = 0$. The boundary condition (†) imposes zero velocity at the tube walls.¹)

Let $y: \mathbb{R} \to \mathbb{R}$ be a solution to the Bessel differential equation studied in exercise 2.3. Let $\alpha > 0$ denote a number such that $y(\alpha) = 0$. Verify the following (on a separate sheet):

- (a) ϕ_{∞} given by $\phi_{\infty}(\xi, \tau) = 1 \xi^2$ satisfies²
 - $\frac{\partial \phi_{\infty}}{\partial \tau}(\xi, \tau) = 0,$
 - the partial differential equation (∂) , and
 - the boundary condition (†), but not (‡).
- (b) $\phi_*: (\xi, \tau) \mapsto \phi_{\infty}(\xi) \phi(\xi, \tau)$ satisfies the partial differential equation

$$\frac{\partial \phi_*}{\partial \tau}(\xi,\tau) = \frac{1}{\xi} \frac{\partial}{\partial \xi} \left(\xi \frac{\partial \phi_*}{\partial \xi}(\xi,\tau) \right). \tag{∂'}$$

(c) $\phi_{\alpha}: (\xi, \tau) \mapsto y(\alpha\xi) \exp(-\alpha^2 \tau)$ satisfies (∂') and $(\dagger).^3$

¹For more context, consult Exercise 4D.2 of R. B. Bird, W. E. Stewart, E. N. Lightfoot, *Transport Phenomena*, 2nd edition, Wiley: New York, 2001. In a later exercise, we shall use the above results in order to obtain a formula for ϕ . An animation of the outcome of this can be viewed here: https://www.math.tugraz.at/~mtechnau/images/2023-w-engimaths-flow.gif

²Physically, ϕ_{∞} models the steady-state velocity profile that is approached by as time goes to infinity.

³Using a "separation *ansatz*", that is, looking for solutions to (∂') of the form $(\xi, \tau) \mapsto Y(\xi)E(\tau)$, one can actually deduce that *Y* must satisfy the Bessel differential equation from exercise 2.3 and *E* must satisfy E' = cE for a suitable constant *c* related to *Y*. Here we are turning this approach on its head for simplicity's sake.