Winter term 2023
Graz, 13.12.2023

10. exercise sheet for Engineering Mathematics

 (first name) (last name) (student id number)

10.1. (Differentiation)

Consider the two maps

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\binom{x}{y} \mapsto\binom{x^{2} \cos y}{x-y^{4}}, \quad \text { and } \quad g: \mathbb{R}^{2} \rightarrow \mathbb{R},\binom{v}{w} \mapsto v+w^{2} .
$$

Compute the following:
(a) $(g \circ f)(x, y)$;
(Hint: for verification: $(g \circ f)(2,1) \approx 3.161$.)

$$
(g \circ f)(x, y)=\square .
$$

(b) the Jacobian matrices $J_{f}(x, y), J_{g}(v, w)$, and $J_{g \circ f}(x, y)$,

(c) the matrix-matrix product $J_{g}(f(x, y)) J_{f}(x, y) . \quad$ (Hint: at $(2,1): \approx(4.161-11.366)$.)

Please submit your solutions during the next lecture (20.12.2023).
https://www.math.tugraz.at/~mtechnau/teaching/2023-w-engimaths.html
10.2. (Gradient)

Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto \cos (x-y)-x y^{2}$.
(a) Compute $J_{f}(x, y) \in \mathbb{R}^{1 \times 2}$.

$$
J_{f}(x, y)=(\square)
$$

(b) Compute $\operatorname{grad} f(x, y) \in \mathbb{R}^{2}$. (Hint: for verification: $\operatorname{grad} f(1,10) \approx(-99.588,-20.412)$.)

$$
\operatorname{grad} f(x, y)=\binom{\square}{\square}
$$

(c) Pick three distinct points $(x, y) \in[-3,3] \times[-2,2]$ for which you compute the gradient $\operatorname{grad} f(x, y)$ numerically and draw it as a vector based at (x, y) in the following picture:

(Hint: the curved lines are curves on which f is constant. For (c) make sure that the vectors you draw have the correct length and orientation.)
10.3. (Divergence)

Let $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(F_{1}(x, y), F_{2}(x, y)\right)$ be a vector field. Define the divergence $\operatorname{div} \vec{F}(x, y)$ of \vec{F} at (x, y) to be $\partial_{1} F_{1}(x, y)+\partial_{2} F_{2}(x, y)$ if the appearing partial derivatives exist. Compute divgrad $\left(x y+y^{2}-x\right)$.
(Hint: here the main task is to decipher the notation.)

$$
\operatorname{div} \operatorname{grad} f(x, y)=\square
$$

10.4. (Start-up of laminar flow in a tube, I)

Let $\phi:[-1,1] \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be a (the) function satisfying the partial differential equation

$$
\frac{\partial \phi}{\partial \tau}(\xi, \tau)=4+\frac{1}{\xi} \frac{\partial}{\partial \xi}\left(\xi \frac{\partial \phi}{\partial \xi}(\xi, \tau)\right)
$$

at all points $(\xi, \tau) \in(-1,1) \times \mathbb{R}, \xi \neq 0$, and the boundary conditions

$$
\begin{gather*}
\phi(\pm 1, \tau)=0 \quad \text { for } \tau \geq 0 \\
\phi(\xi, 0)=0 \quad \text { for } \xi \in[-1,1] \tag{+}
\end{gather*}
$$

(Provided suitable physical assumptions which we do not explicate here, the function ϕ can be used to model the velocity profile of laminar flow building up from a fluid in a circular tube, initially at rest (imposed by (\ddagger)), with a pressure gradient applied at the ends of the tube at time $\tau=0$. The boundary condition (\dagger) imposes zero velocity at the tube walls. ${ }^{1}$)

Time $\tau=0$ (fluid at rest),

time $\tau>0$ (arrows indicate fluid velocity; length $=\phi(\xi, \tau)$).

Let $y: \mathbb{R} \rightarrow \mathbb{R}$ be a solution to the Bessel differential equation studied in exercise 2.3. Let $\alpha>0$ denote a number such that $y(\alpha)=0$. Verify the following (on a separate sheet):
(a) ϕ_{∞} given by $\phi_{\infty}(\xi, \tau)=1-\xi^{2}$ satisfies 2

- $\frac{\partial \phi_{\infty}}{\partial \tau}(\xi, \tau)=0$,
- the partial differential equation (∂), and
- the boundary condition (\dagger), but not $(\stackrel{+}{\dagger})$.
(b) $\phi_{*}:(\xi, \tau) \mapsto \phi_{\infty}(\xi)-\phi(\xi, \tau)$ satisfies the partial differential equation

$$
\frac{\partial \phi_{*}}{\partial \tau}(\xi, \tau)=\frac{1}{\xi} \frac{\partial}{\partial \xi}\left(\xi \frac{\partial \phi_{*}}{\partial \xi}(\xi, \tau)\right)
$$

(c) $\phi_{\alpha}:(\xi, \tau) \mapsto y(\alpha \xi) \exp \left(-\alpha^{2} \tau\right)$ satisfies $\left(\partial^{\prime}\right)$ and $(\dagger) .^{3}$

[^0]
[^0]: ${ }^{1}$ For more context, consult Exercise 4D. 2 of R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd edition, Wiley: New York, 2001. In a later exercise, we shall use the above results in order to obtain a formula for ϕ. An animation of the outcome of this can be viewed here: https://www.math.tugraz.at/~mtechnau/images/2023-w-engimaths-flow.gif
 ${ }^{2}$ Physically, ϕ_{∞} models the steady-state velocity profile that is approached by as time goes to infinity.
 ${ }^{3}$ Using a "separation ansatz", that is, looking for solutions to (∂^{\prime}) of the form $(\xi, \tau) \mapsto Y(\xi) E(\tau)$, one can actually deduce that Y must satisfy the Bessel differential equation from exercise 2.3 and E must satisfy $E^{\prime}=c E$ for a suitable constant c related to Y. Here we are turning this approach on its head for simplicity's sake.

