Winter term 2023
Graz, 10.01.2024

12. exercise sheet for Engineering Mathematics

(first name)
(last name)
(student id number)

12.1. (Taylor polynomials)
(4 credits)
For the functions f given below, compute their Taylor polynomials

$$
\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}
$$

of order $n=0,1,2,3$ at $0\left(x_{0}=0\right.$ in the notation from § 6.2) and use a computer with software of your choice to plot the graphs of these polynomials along with the graph of f on the interval $(-1,1)$.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{5}+2 x^{3}+x-4$;

$$
\sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k}=
$$

(b) $f:[-1,1] \rightarrow[0, \pi], x \mapsto \arccos (x)$.

$$
\sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k}=
$$

(Hint: see § 6.2 in the lecture notes for more on Taylor polynomials. For the task of computing derivatives, you may want to take another look at § 0.6. It suffices to write down the Taylor polynomials for $n=3$. For the plots, please use a separate sheet if you cannot superimpose them onto this sheet.)
12.2. (Newton's method)

In this exercise, we shall use Newton's method to find numerical approximations to the roots of functions. (You can read up on Newton's method in § 6.3 of the lecture notes, but this exercise is self-contained.) Consider the function $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(x \exp (y)-$ $1, y-x-1$).
(a) Compute $J_{\vec{f}}(x, y)=$

(b) Determine all $(x, y) \in \mathbb{R}^{2}$ for which the matrix $J_{\vec{f}}(x, y) \in \mathbb{R}^{2 \times 2}$ is invertible and provide a formula for $J_{\vec{f}}(x, y)^{-1}$.

(c) Use your answer for (b) to find a formula for

$$
\operatorname{Iter}(x, y):=(x, y)-J_{\vec{f}}(x, y)^{-1} \vec{f}(x, y)
$$

assuming that (x, y) are such that $J_{\vec{f}}(x, y)$ is invertible.

(d) Set $\vec{x}_{0}=(1,-1), \vec{x}_{1}=\operatorname{Iter}\left(\vec{x}_{0}\right), \vec{x}_{2}=\operatorname{Iter}\left(\vec{x}_{1}\right), \vec{x}_{3}=\operatorname{Iter}\left(\vec{x}_{2}\right)$. Use your formula from (c) and a calculator (or suitable software) to complete the following table:

(Hint: here you are allowed [and encouraged] to use numerical approximations provided by your calculator. Otherwise you get iterated exponentials which quickly become very awkward. For $\vec{f}\left(\vec{x}_{3}\right)$ you should get a vector with quite small entries.)
12.3. (Start-up of laminar flow in a tube, II)
(4 credits)
Consider the Bessel function $J_{0}: \mathbb{R} \rightarrow \mathbb{R}$ of zeroth order and first kind, given by

$$
J_{0}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{4^{k}(k!)^{2}} x^{2 k}
$$

(You know this function from the solution of exercise 2.3, and you have plotted approximations to $4 J_{0}$ there.) Here we shall be interested in finding approximations to the zeros of J_{0}. We approximate J_{0} by its 8-th order Taylor polynomial about 0:

$$
J_{0}(x) \approx \sum_{k=0}^{4} \frac{(-1)^{k}}{4^{k}(k!)^{2}} x^{2 k}=1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}-\frac{1}{2304} x^{6}+\frac{1}{147456} x^{8}=: f(x)
$$

(a) Compute two steps of Newton's method for f with initial value $x_{0}=2$ in order to get an approximation to a root of f. (Which, as we hope, does approximate a root of J_{0} too.)

i	0	1	2
$x_{i} \approx$	2		

(Hint: you can check your result for sanity by comparing x_{2} to the list of roots given below.)
(b) Approximations to the first two roots of J_{0} are given by

$$
\alpha_{1}=2.404825558, \quad \alpha_{2}=5.520078112
$$

Using the formula

$$
\sum_{\alpha} \frac{J_{0}(\alpha \xi)}{\alpha^{3} J_{0}^{\prime}(\alpha)}=-\frac{1}{8}\left(1-\xi^{2}\right)
$$

(which we do not prove) where α ranges over all positive roots of J_{0}, one can show that the function ϕ from exercise 10.4 admits the following analytic representation:

$$
\phi(\tau, \xi)=1-\xi^{2}+8 \sum_{\alpha} \frac{J_{0}(\alpha \xi)}{\alpha^{3} J_{0}^{\prime}(\alpha)} \exp \left(-\alpha^{2} \tau\right)
$$

(Note that in the notation of exercise $10.4, \phi$ is constructed as a suitable superposition of the functions ϕ_{∞} and ϕ_{α} studied there.) We now approximate this via

$$
\phi_{\approx}(\tau, \xi)=1-\xi^{2}+8 \frac{f\left(\alpha_{1} \xi\right)}{\alpha_{1}^{3} f^{\prime}\left(\alpha_{1}\right)} \exp \left(-\alpha_{1}^{2} \tau\right)+8 \frac{f\left(\alpha_{2} \xi\right)}{\alpha_{2}^{3} f^{\prime}\left(\alpha_{2}\right)} \exp \left(-\alpha_{2}^{2} \tau\right)
$$

Use a computer to plot $\phi_{\approx}(\tau, \cdot):[-1,1] \rightarrow \mathbb{R}, \xi \mapsto \phi_{\approx}(\tau, \xi)$, for the following three choices of $\tau: \tau \in\{0,1 / 5,1\}$. (Hint: submit printouts of the plots. In exercise 10.4 you were given the link to an animation showing $\phi(\tau, \cdot)$, as τ increases. If your computations are correct, then you should notice obvious similarities between your plots and the animation.)

