Winter term 2023
Graz, 17.01.2024

13. exercise sheet for Engineering Mathematics

13.1. (Polar coordinates, differentiation)

Consider the function

$$
f: \mathbb{R}^{2} \backslash\{\overrightarrow{0}\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{2 x y}{\left(x^{2}+y^{2}\right)^{3}}
$$

as well as the well-known polar coordinate map $\vec{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(r, \varphi) \mapsto(r \cos \varphi, r \sin \varphi)$. Let $\vec{v}=(1 / \sqrt{2}, 1 / \sqrt{2})$. Compute the following quantities.
(a) $\partial_{1} f(x, y)$ and $\partial_{2} f(x, y)$.
(b) $\frac{\partial f}{\partial \vec{v}}(x, y)$.
(c) $(f \circ \vec{P})(r, \varphi)$.
(d) $\frac{\partial f}{\partial r}(r, \varphi)$ and $\frac{\partial f}{\partial \varphi}(r, \varphi)$.
(Hint: this notation means $\partial_{1}(f \circ \vec{P})$ and $\partial_{2}(f \circ \vec{P})$; see Example 6.6.)
13.2. (Sums and integrals)

This exercise is aimed at getting a feel for the definition of the Darboux integral (see Chapter 7 of the lecture notes).
(a) Stare at the picture below and use this to find a formula for $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+\ldots+n^{3}$.

(b) Using a partition of $[0,1]$ into n pieces of equal length, the definition of the Darboux integral yields

$$
\sum_{k=1}^{n}\left(\frac{k-1}{n}\right)^{3} \frac{1}{n} \leq \int_{0}^{1} x^{3} \mathrm{~d} x \leq \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{3} \frac{1}{n}
$$

Use your answer from (a) to compute the outer two sums. Also compute the integral in the middle and show that, as $n \rightarrow \infty$, both sums converge to that integral (this corresponds to taking the partition $0,1 / n, 2 / n, \ldots, 1$ of $[0,1]$ to be much finer).
13.3. (A variant of the Gaussian integral)

Compute $\int_{-\infty}^{\infty} \exp \left(-x^{2}+x\right) \mathrm{d} x$.
(Hint: call the "completing the square" trick from your school days and use the result from Example 7.3.)
13.4. (Volume of a solid)

Compute the volume of

$$
R=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 1,0 \leq y \leq x, 0 \leq z \leq x y\right\}
$$

(Hint: compute $\int_{R} 1 \mathrm{~d}^{3} \vec{x}$ using Fubini's theorem. A rough sketch of R is given below.)

