

13. exercise sheet for Engineering Mathematics

13.1. (*Polar coordinates, differentiation*) Consider the function

$$f: \mathbb{R}^2 \setminus \{\vec{0}\} \to \mathbb{R}, \quad (x, y) \mapsto \frac{2xy}{(x^2 + y^2)^3},$$

as well as the well-known polar coordinate map $\vec{P} \colon \mathbb{R}^2 \to \mathbb{R}^2$, $(r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi)$. Let $\vec{v} = (1/\sqrt{2}, 1/\sqrt{2})$. Compute the following quantities.

- (a) $\partial_1 f(x, y)$ and $\partial_2 f(x, y)$.
- (b) $\frac{\partial f}{\partial \vec{v}}(x, y)$.

(c)
$$(f \circ \vec{P})(r, \varphi)$$
.

(d)
$$\frac{\partial f}{\partial r}(r,\varphi)$$
 and $\frac{\partial f}{\partial \varphi}(r,\varphi)$.

(Hint: this notation means $\partial_1(f \circ \vec{P})$ and $\partial_2(f \circ \vec{P})$; see Example 6.6.)

13.2. (Sums and integrals)

This exercise is aimed at getting a feel for the definition of the Darboux integral (see Chapter 7 of the lecture notes).

(a) Stare at the picture below and use this to find a formula for $\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \ldots + n^3.$

(b) Using a partition of [0, 1] into *n* pieces of equal length, the definition of the Darboux integral yields

$$\sum_{k=1}^{n} \left(\frac{k-1}{n}\right)^{3} \frac{1}{n} \le \int_{0}^{1} x^{3} \, \mathrm{d}x \le \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{3} \frac{1}{n}.$$

Use your answer from (a) to compute the outer two sums. Also compute the integral in the middle and show that, as $n \to \infty$, both sums converge to that integral (this corresponds to taking the partition $0, 1/n, 2/n, \ldots, 1$ of [0, 1] to be much finer).

13.3. (A variant of the Gaussian integral)

Compute $\int_{-\infty}^{\infty} \exp(-x^2 + x) dx$.

(Hint: call the "completing the square" trick from your school days and use the result from Example 7.3.)

13.4. (Volume of a solid) Compute the volume of

$$R = \{ (x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, 0 \le y \le x, 0 \le z \le xy \}.$$

(Hint: compute $\int_{R} 1 d^{3} \vec{x}$ using Fubini's theorem. A rough sketch of *R* is given below.)

