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14.1. (Area computation) (4 credits)

Compute the area of Ω = { (x , y) ∈ R3 : 0≤ x ≤ 2π− sin(y), 0≤ y ≤ x }.

area(Ω) = . Ω

(Hint: see the solution of exercise 13.4. The answer is approximately 19.7.)

14.2. (Volume of a solid, II) (4 credits)

Compute the volume of R= { (x , y, z) ∈ R3 : 0≤ x ≤ 1, 0≤ y ≤ 1− x , 0≤ z ≤ x y }.

vol(R) = .

(Hint: see the solution of exercise 13.4. The answer is roughly 0.04.)

Please submit your solutions during the next lecture (31.01.2024).
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14.3. (Length of a curve) (4 credits)

Consider the image γ([0, 1]) = {γ(t) : t ∈ [0, 1] } of [0, 1] under the function γ: R→ R2,

t 7→ (2t2 − t, t − t3). It is a curve in R2:

N = 4

γ([0,1]) ⊂ R2 dγn/N ([0, 1/N]) ∈ R2 (shifted by γ(n/N))

N = 8

Let τ > 0 and put N = 4. Compute the following:

(a) dγt: R→ R
2;

dγt(τ) =





 ,





 ∈ R
2.

(b) the length of dγt([0,τ]) = ;

(c)

N−1
∑

n=0

‖γ((n+ 1)/N)− γ(n/N)‖ ≈ ;

(d)

N−1
∑

n=0

length(dγn/N ([0, 1/N]))≈ .

(Hints: for (b), see exercise 6.3; for τ = t = 2 your answer should be ≈ 26. For (c)

and (d), numerical approximations suffice; you may use a calculator for obtaining these.

The answers are roughly 1.5 and 1.3, but your answers should have higher accuracy.)
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14.4. (Area of a torus) (4 credits)

Let R> r > 0 and put U = [0, 2π)2. The map

~Φ: U → R3,

�

u

v

�

7→





R cos(u) + r cos(u) cos(v)

R sin(u) + r sin(u) cos(v)

r sin(v)



,

parametrises a torus T = ~Φ(U) (also known as a “doughnut”) with outer radius R and

inner radius r. Compute the following:

(a) J~Φ(u, v) =

















































.

(b) det(J~Φ(u, v)TJ~Φ(u, v)) = .

(Hint: the matrix whose determinant is to be computed should turn out to be a

diagonal matrix.)

(c) area(T ) =

∫∫

T

1 dA=

∫

U

Æ

det(J~Φ(u, v)TJ~Φ(u, v))d2(u, v) = .

(Hint: you may verify your result by checking that, for r = 1 and R = 3, your for-

mula yields ≈ 118.435.)

(Remark: to know that in (c) you are really computing the area of T , you should read § 7.2

of the lecture notes [which has not yet been discussed in the lecture], but the exercise

is phrased in such a way that you only require Fubini and your knowledge from the

previous chapters.)
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