14. exercise sheet for Engineering Mathematics

(first name)
(last name)
(student id number)

14.1. (Area computation)
(4 credits)
Compute the area of $\Omega=\left\{(x, y) \in \mathbb{R}^{3}: 0 \leq x \leq 2 \pi-\sin (y), 0 \leq y \leq x\right\}$.

(Hint: see the solution of exercise 13.4. The answer is approximately 19.7.)
14.2. (Volume of a solid, II) (4 credits)
Compute the volume of $R=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 1,0 \leq y \leq 1-x, 0 \leq z \leq x y\right\}$.

$$
\operatorname{vol}(R)=\square
$$

(Hint: see the solution of exercise 13.4. The answer is roughly 0.04.)
14.3. (Length of a curve)

Consider the image $\gamma([0,1])=\{\gamma(t): t \in[0,1]\}$ of $[0,1]$ under the function $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$, $t \mapsto\left(2 t^{2}-t, t-t^{3}\right)$. It is a curve in \mathbb{R}^{2} :

Let $\tau>0$ and put $N=4$. Compute the following:
(a) $\mathrm{d} \gamma_{t}: \mathbb{R} \rightarrow \mathbb{R}^{2}$;

(b) the length of $\mathrm{d} \gamma_{t}([0, \tau])=\square$;
(c) $\sum_{n=0}^{N-1}\|\gamma((n+1) / N)-\gamma(n / N)\| \approx \square$;
(d) $\sum_{n=0}^{N-1} \operatorname{length}\left(\mathrm{~d} \gamma_{n / N}([0,1 / N])\right) \approx$.
(Hints: for (b), see exercise 6.3; for $\tau=t=2$ your answer should be ≈ 26. For (c) and (d), numerical approximations suffice; you may use a calculator for obtaining these. The answers are roughly 1.5 and 1.3, but your answers should have higher accuracy.)
14.4. (Area of a torus)

Let $R>r>0$ and put $U=[0,2 \pi)^{2}$. The map
$\vec{\Phi}: U \rightarrow \mathbb{R}^{3}, \quad\binom{u}{v} \mapsto\left(\begin{array}{c}R \cos (u)+r \cos (u) \cos (v) \\ R \sin (u)+r \sin (u) \cos (v) \\ r \sin (v)\end{array}\right)$,

parametrises a torus $T=\vec{\Phi}(U)$ (also known as a "doughnut") with outer radius R and inner radius r. Compute the following:

(b) $\operatorname{det}\left(J_{\vec{\Phi}}(u, v)^{\mathrm{T}} J_{\vec{\Phi}}(u, v)\right)=$
(Hint: the matrix whose determinant is to be computed should turn out to be a diagonal matrix.)
(c) $\operatorname{area}(T)=\iint_{T} 1 \mathrm{~d} A=\int_{U} \sqrt{\operatorname{det}\left(J_{\vec{\Phi}}(u, v)^{\mathrm{T}} J_{\vec{\Phi}}(u, v)\right)} \mathrm{d}^{2}(u, v)=\square$. (Hint: you may verify your result by checking that, for $r=1$ and $R=3$, your formula yields ≈ 118.435.)
(Remark: to know that in (c) you are really computing the area of T, you should read § 7.2 of the lecture notes [which has not yet been discussed in the lecture], but the exercise is phrased in such a way that you only require Fubini and your knowledge from the previous chapters.)

