

2. exercise sheet for Mathematics for Advanced Materials Science

2.1. (Linear ordinary differential equations)

- (4 credits)
- (a) Let λ_0 be an arbitrary number. Verify that both $t \mapsto \exp(\lambda_0 t)$ and $t \mapsto t \exp(\lambda_0 t)$ satisfy the differential equation $\ddot{x} - 2\lambda_0 \dot{x} + \lambda_0^2 x \stackrel{!}{=} 0$.
- (b) Find a solution x to the differential equation from (a) with x(0) = 3 and $\dot{x}(0) = 2$.

(For part (a) of this exercise you may need more space than is given here. Use a separate sheet.)

Please submit your solutions during the next lecture (19.10.2023). https://www.math.tugraz.at/~mtechnau/teaching/2023-w-mams.html

2.2. (Working with complex numbers) (4 credits) Sketch the following set of complex numbers below: $\{z \in \mathbb{C} : 2 \le |z| < 4, \operatorname{Re}(z) \ge -2\}$.

2.3. (Solving quadratic equations)

(4 credits)

Find all (complex) solutions to the equation $X^2 - 2X + 12 \stackrel{!}{=} 0$. (Hint: you can use the formula for finding roots of quadratic polynomials and $\sqrt{-1} = \pm i$.)

2.4. (Complex differentiation)

Let z be a complex number. Compute:

(a)
$$\frac{d}{dz}(z^7 + 4z^2 - \cos(z^2) + 42\exp(z)) =$$

(b) $\frac{d}{dz}\left(\exp\left(\frac{z^2}{z+1}\right)(1+z)^2\right) =$ for $z \neq -1$.

(Hint: just pretend that *z* is a real number and differentiate as you would have done in that case. exp' = exp, cos' = -sin.)

(4 credits)