Winter term 2023
Graz, 12.10.2023

2. exercise sheet for Mathematics for Advanced Materials Science

(first name)

\square
(student id number)
2.1. (Linear ordinary differential equations)
(a) Let λ_{0} be an arbitrary number. Verify that both $t \mapsto \exp \left(\lambda_{0} t\right)$ and $t \mapsto t \exp \left(\lambda_{0} t\right)$ satisfy the differential equation $\ddot{x}-2 \lambda_{0} \dot{x}+\lambda_{0}^{2} x \stackrel{!}{=} 0$.
(b) Find a solution x to the differential equation from (a) with $x(0)=3$ and $\dot{x}(0)=2$.
(For part (a) of this exercise you may need more space than is given here. Use a separate sheet.)
2.2. (Working with complex numbers)

Sketch the following set of complex numbers below: $\{z \in \mathbb{C}: 2 \leq|z|<4, \operatorname{Re}(z) \geq-2\}$.

2.3. (Solving quadratic equations)
(4 credits)
Find all (complex) solutions to the equation $X^{2}-2 X+12 \stackrel{!}{=} 0$.
(Hint: you can use the formula for finding roots of quadratic polynomials and $\sqrt{-1}= \pm \mathrm{i}$.)
2.4. (Complex differentiation)

Let z be a complex number. Compute:
(a) $\frac{\mathrm{d}}{\mathrm{d} z}\left(z^{7}+4 z^{2}-\cos \left(z^{2}\right)+42 \exp (z)\right)=\square$
(b) $\frac{\mathrm{d}}{\mathrm{d} z}\left(\exp \left(\frac{z^{2}}{z+1}\right)(1+z)^{2}\right)=\square$ for $z \neq-1$.
(Hint: just pretend that z is a real number and differentiate as you would have done in that case. $\exp ^{\prime}=\exp , \cos ^{\prime}=-\sin$.)

