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4.1. (Laplace transform) (4 credits)

Find L{ f } where f (t) = t sin(t)exp(t).

L{ f }(s) = .

(Hint: use L{ f }(4) = 0.06 to verify your final result. To find the solution you can try

to use integration by parts a couple of times. If done correctly, integrating by parts four

times should suffice. Alternatively, you are free to use Proposition 2.4 and Table 1 from

the lecture notes. The latter option is probably the easier of the two.)

4.2. (Laplace transform) (4 credits)

In exercise 3.4 you have computed

L{x}(s) =
3s(s2 + s+ 1) + 4

3s4 + 4s2 + 1
(†)

for the solution x to the following initial value problem:
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differential equation: 3 ẍ + x
!
= sin on R+,

initial conditions:

�

ẋ(0)
!
= 1,

x(0)
!
= 1.

Please submit your solutions during the next lecture (16.11.2023).

https://www.math.tugraz.at/∼mtechnau/teaching/2023-w-mams.html

https://www.math.tugraz.at/~mtechnau/teaching/2023-w-mams.html


The goal is to invert the Laplace transform in order to find an expression for x . To this

end, compute the partial fraction decomposition of (†). In this particular setting, find eight

complex numbers to put in the following boxes in order to make the equation work:

L{x}(s) =

s−

� � +

s−

� � +

s−

� � +

s−

� � .

Use this to find an expression for x .

x(t) = .

(Hint: you can use x(1)≈ 1.8352 and x(2)≈ 2.3259 to verify your result. An explanation

of partial fraction decomposition and how to compute it, can be found in § 2.5 of the

lecture notes.)

4.3. (Laplace transform) (4 credits)

Find a function f with L{ f }(s) =
s− 2

s2 + 4
.

f (t) = .

(Hint: you can use f (1)≈ 0.10316 and f (π) = 1 to verify your result.)

4.4. (Laplace transform) (4 credits)

Compute

L{t 7→ eit}(s) =

∫ ∞

0

eit e−st dt

and use this to deduce the following formulae:

(a) L{cos}(s) =
s

s2 + 1
, and

(b) L{sin}(s) =
1

s2 + 1
.

(Remark: unlike the other exercises above, this one actually asks for the computation that

takes you to the final result. If you run out of space here, please use a separate sheet. The

point of the present exercise is two-fold: (1) to see that one can also compute the Laplace

transform “by hand” from the definition, and (2) to see once more that complex numbers

can on occasion help to simplify computations.)
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