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6.1. (Inverting matrices) (4 credits)

Find the inverse matrix A−1 of

A=
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0 0 1
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(Hint: there are several ways of doing this. For example, you may use the Gauß–Jordan

algorithm from § 3.6.5 of the lecture notes. Alternatively, you may use Cramer’s rule,

Proposition 3.2. The final result will actually have all integer entries. You may check your

answer by computing the matrix–matrix product A−1A and verifying that it equals the 3×3

identity matrix 13.)

6.2. (Finding certain linear maps) (4 credits)

Find a matrix A∈ R2×2 such that the associated linear map f : R2→ R2, v⃗ 7→ Av⃗, maps the

parallelogram

= { (x , y) ∈ R2 : 0≤ 12
11

x − 4
11

y ≤ 1, 0≤ 16
11

y − 4
11

x ≤ 1 }

Please submit your solutions during the next lecture (30.11.2023).
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onto the unit square □ = [0, 1]× [0, 1], i.e., f ( ) := { f (v⃗) : v⃗ ∈ }= □:

A=
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□
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→
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(Hint: it may be easier to find a matrix B ∈ R2×2 such that the associated linear map maps

□ onto . One may then take A= B−1. You can check your result easily on your own, by

verifying that it maps the vertices of the parallelogram to the vertices of the square.)

6.3. (Volume of a parallelepiped) (4 credits)

Compute the volume of the parallelepiped

:= (v⃗, w⃗, z⃗) := {λ1 v⃗ +λ2w⃗+λ3z⃗ : 0≤ λ1,λ2,λ3 ≤ 1 }.

spanned by the vectors v⃗ = (1, 1, 0), w⃗= (1, 2, 0) and z⃗ = (−1, 0, 2).

volume( ) = volume
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(Hint: you can use Cavalieri’s principle, or you can simply compute an appropriate deter-

minant. For more details, see § 3.2 in the lecture notes. The final answer should be close

to 2.)

6.4. (Computing determinants) (4 credits)

Let r,ϕ,θ ∈ R. Compute:

(a) det

�

5 4

2 3

�

= ,

(b) det





4 0 0

0 3 2

0 1 0



 = ,

(c) det





cos(ϕ) sin(θ ) r cos(ϕ) cos(θ ) −r sin(ϕ) sin(θ )

sin(ϕ) sin(θ ) r sin(ϕ) cos(θ ) r cos(ϕ) sin(θ )

cos(θ ) −r sin(θ ) 0



 = .

(Hint: see § 3.2 in the lecture notes. For (c), employ the identity cos(ϕ)2 + sin(ϕ)2 =

|exp(iϕ)| = 1 from Theorem 1.3. Your final result should only depend on r and θ and

look very simple.)
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