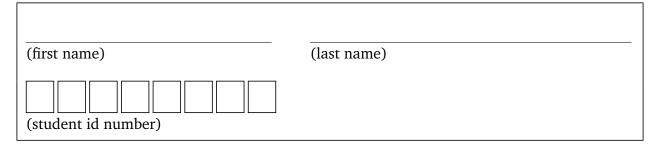
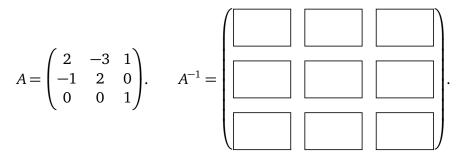


6. exercise sheet for Mathematics for Advanced Materials Science



6.1. *(Inverting matrices)* Find the inverse matrix A^{-1} of

(4 credits)



(Hint: there are several ways of doing this. For example, you may use the Gauß–Jordan algorithm from § 3.6.5 of the lecture notes. Alternatively, you may use Cramer's rule, Proposition 3.2. The final result will actually have all integer entries. You may check your answer by computing the matrix–matrix product $A^{-1}A$ and verifying that it equals the 3×3 identity matrix $\mathbf{1}_3$.)

6.2. (*Finding certain linear maps*) (4 credits) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that the associated linear map $f : \mathbb{R}^2 \to \mathbb{R}^2$, $\vec{v} \mapsto A\vec{v}$, maps the parallelogram

Please submit your solutions during the next lecture (30.11.2023).

https://www.math.tugraz.at/~mtechnau/teaching/2023-w-mams.html

onto the unit square $\Box = [0,1] \times [0,1]$, i.e., $f(\Box) \coloneqq \{f(\vec{v}) : \vec{v} \in \Box\} = \Box$:

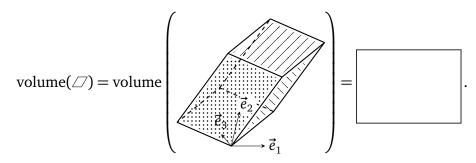


(Hint: it may be easier to find a matrix $B \in \mathbb{R}^{2 \times 2}$ such that the associated linear map maps \Box onto \Box . One may then take $A = B^{-1}$. You can check your result easily on your own, by verifying that it maps the vertices of the parallelogram to the vertices of the square.)

6.3. (Volume of a parallelepiped) (4 credits) Compute the volume of the parallelepiped

 $\square := \square(\vec{v}, \vec{w}, \vec{z}) := \{ \lambda_1 \vec{v} + \lambda_2 \vec{w} + \lambda_3 \vec{z} : 0 \le \lambda_1, \lambda_2, \lambda_3 \le 1 \}.$

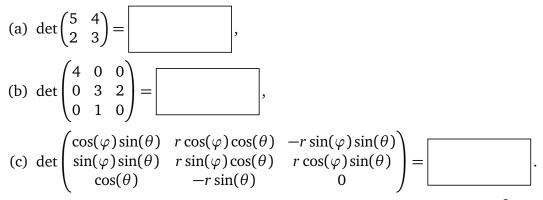
spanned by the vectors $\vec{v} = (1, 1, 0)$, $\vec{w} = (1, 2, 0)$ and $\vec{z} = (-1, 0, 2)$.



(Hint: you can use Cavalieri's principle, or you can simply compute an appropriate determinant. For more details, see § 3.2 in the lecture notes. The final answer should be close to 2.)

6.4. (*Computing determinants*) Let $r, \varphi, \theta \in \mathbb{R}$. Compute:

(4 credits)



(Hint: see § 3.2 in the lecture notes. For (c), employ the identity $\cos(\varphi)^2 + \sin(\varphi)^2 = |\exp(i\varphi)| = 1$ from Theorem 1.3. Your final result should only depend on *r* and θ and look very simple.)