

Winter term 2023
Graz, 30.11.2023

7. exercise sheet for Mathematics for Advanced Materials Science

7.1. (Solving systems of linear equations with a parameter)

For $x \in \mathbb{R}$, consider the matrix $A_{x}=\left(\begin{array}{cc}x-1 & 2 \\ 2 & x-1\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
(a) Find all values of x such that the system of linear equations given by $A_{x} \vec{v} \stackrel{!}{=}\binom{0}{0}$ admits a solution $\vec{v} \in \mathbb{R}^{2}$ different from the zero vector. (Hint: one can deduce from Cramer's rule that it suffices to consider the x such that $\operatorname{det} A_{x}=0$.)
(b) For each x determined above, provide a non-zero solution \vec{v} to the above system.
7.2. (Gram determinants)

Consider the matrix $A=\binom{1}{3} \in \mathbb{R}^{2 \times 1}$ and the associated linear map $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}, v \mapsto A v$.
(a) Sketch the image $\operatorname{im} f=\{f(v): v \in \mathbb{R}\} \subseteq \mathbb{R}^{2}$ of f below:

(b) In your above sketch, mark the part of $\operatorname{im} f$ that is $\{f(v): 0 \leq v \leq 1\}$ and determine its length.
(c) Compute $\sqrt{\operatorname{det}\left(A^{\mathrm{T}} A\right)}$ and $\sqrt{\operatorname{det}\left(A A^{\mathrm{T}}\right)}$.
7.3. (Area of a triangle)

Compute the area of the two triangles with the following vertices:
(a) $(0,0),(1,2)$ and $(1,3)$ in \mathbb{R}^{3}.
(b) $(0,0,0),(1,2,3)$ and $(1,3,3)$ in \mathbb{R}^{3}.
(c) $(0,0,0,0,0,0,0),(1,1,0,2,1,1,1)$ and $(1,2,1,0,1,0,1)$ in \mathbb{R}^{7}.
(Hint: $\boldsymbol{\nabla}$. The answers are roughly $0.5,1.6$ and 3.4 respectively.)
7.4. (Linear regression)

Consider the matrix $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & 3 \\ 1 & 4\end{array}\right) \in \mathbb{R}^{4 \times 2}$ and the vector $\vec{b}=\left(\begin{array}{c}1 \\ 1 / 3 \\ 19 / 6 \\ 1\end{array}\right) \in \mathbb{R}^{4}$.
(a) Solve the system of linear equations $A^{\mathrm{T}} A \vec{x} \stackrel{!}{=} A^{\mathrm{T}} b$ for $\vec{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
(b) With your solution \vec{x} from above, sketch the graph of the affine map $f: \mathbb{R} \rightarrow \mathbb{R}$, $t \mapsto x_{1}+x_{2} t$, below:

(The black points are $(-1,1),(0,1 / 3)$,
$(3,19 / 6)$ and $(4,1)$.)
(c) Using the function f from the previous exercise, compute

$$
\mathscr{E}_{f}:=(1-f(-1))^{2}+(1 / 3-f(0))^{2}+(19 / 6-f(3))^{2}+(1-f(4))^{2}
$$

(Hint: the final solution may look slightly ugly, but it is roughly 3.5.)
(d) Pick a vector $\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ other than \vec{x} and compute the quantity in (\star) with f replaced by $g: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto y_{1}+y_{2} t$. Also sketch the graph of g in the figure in (b).
(Remark: you may consult § 3.2.6 of the lecture notes for some general context on this exercise.)

