

9. exercise sheet for Mathematics for Advanced Materials Science

9.1. (*Eigenvalues and eigenvectors, I*) Consider $(C, n) \in \{(A, 2), (B, 3)\}$, where *A* and *B* are the following matrices:

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 0 & 3 & 1 \end{pmatrix}.$$

For *both* choices of (C, n) do the following:

- (a) determine the characteristic polynomial $\chi_C = \det(X \mathbf{1}_n C)$ (here "X" should be treated like a variable; think of your favourite number, but do not plug it in),
- (b) compute the eigenvalues of *C* (= the numbers λ that yield zero when substituted for *X* in the polynomial χ_C) and all associated eigenvectors (= the non-zero solutions $\vec{v} \in \mathbb{R}^n$ of $(\lambda \mathbf{1}_n C)\vec{v} \stackrel{!}{=} \vec{0}$),
- (c) and discern whether the matrix *C* is diagonalisable or not (i.e., decide whether you can choose eigenvectors $\vec{v}_1, \ldots, \vec{v}_n$ such that the matrix with these eigenvectors as columns has non-zero determinant).

(Hint: you can find some worked examples in § 3.5 of the lecture notes.)

9.2. (Eigenvalues and eigenvectors, II)

Consider the matrix $A \in \mathbb{R}^{2 \times 2}$ and the vectors $\vec{b}_1, \ldots, \vec{b}_5 \in \mathbb{R}^2$ given below:

$$A = \begin{pmatrix} 11 & -12 \\ 8 & -9 \end{pmatrix}, \quad \vec{b}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \vec{b}_3 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad \vec{b}_4 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad \vec{b}_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

- (a) For each vector \vec{b}_j (j = 1, ..., 5), check whether it is an eigenvector of *A* and, if it is, determine the corresponding eigenvalue.
- (b) Let $B_{ij} \in \mathbb{R}^{2 \times 2}$ denote the matrix with columns \vec{b}_i and \vec{b}_j . Compute the matrix

$$C_{ij} \coloneqq B_{ij}^{-1}AB_{ij}$$

for all three pairs $(i, j) \in \{(1, 3), (1, 4), (3, 5)\}$.

9.3. (Systems of linear differential equations)

In this exercise, you should apply linear algebra to solve a system of linear differential

equations. More precisely, the goal is to find two differentiable functions $x, y: \mathbb{R} \to \mathbb{R}$ such that for all $t \in \mathbb{R}$

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} x(t) + 2y(t) \\ 2x(t) + y(t) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix},$$
 (†)

and

$$x(0) \stackrel{!}{=} 1, \quad y(0) \stackrel{!}{=} 3.$$
 (‡)

(Here a dot above a function means the derivative with respect to *t*, that is, $\dot{x}(t) = x'(t)$.)

- (a) Compute the eigenvalues and associated eigenvectors of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- (b) Find an invertible matrix $T \in \mathbb{R}^{2 \times 2}$ such that $D = T^{-1}AT$ is a diagonal matrix.
- (c) Find differentiable functions $u, v: \mathbb{R} \to \mathbb{R}$ such that, for all $t \in \mathbb{R}$,

$$\begin{pmatrix} \dot{u}(t) \\ \dot{v}(t) \end{pmatrix} \stackrel{!}{=} D \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}.$$

(Hint: try $t \mapsto \exp(\lambda t)$ for suitable λ .)

- (d) Verify that $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \coloneqq T \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$ satisfies (†).
- (e) Replace your solutions u and v found in (c) with scalar multiples of themselves in such a way that the solution to (†) constructed in (d) also satisfies (‡).

9.4. (Fourier series, I)

Consider the 1-periodic function $f : \mathbb{R} \to \mathbb{R}, x \mapsto 5 + 2\cos(2\pi x)$.

(a) Compute the Fourier coefficients

$$\hat{f}(k) = \int_0^1 f(x) e^{-2\pi \mathrm{i}kx} \,\mathrm{d}x.$$

of g for $k \in \mathbb{Z}$.

(Hint: you should get $\hat{f}(0) = 5$, $\hat{f}(\pm 1) \neq 0$, and $\hat{f}(k) = 0$ for all other k.)

(b) Determine at which points f is represented by its Fourier series, i.e., for which $x \in \mathbb{R}$ does

$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}(k) e^{2\pi i k x} ?$$

(Hint: you can use Theorem 4.1, but in the present case, the infinite series will turn out to be a finite sum, because almost all $\hat{f}(k)$ are zero, as you will know from (a). In this very special case, one can also argue using Theorem 1.3.)