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9.1. (Eigenvalues and eigenvectors, I)

Consider (C , n) ∈ {(A, 2), (B, 3)}, where A and B are the following matrices:

A=

�

2 1

−1 0

�

, B =





1 2 1

2 1 1

0 3 1



.

For both choices of (C , n) do the following:

(a) determine the characteristic polynomial χC = det(X1n − C) (here “X ” should be

treated like a variable; think of your favourite number, but do not plug it in),

(b) compute the eigenvalues of C (= the numbers λ that yield zero when substituted for

X in the polynomial χC) and all associated eigenvectors (= the non-zero solutions

v⃗ ∈ Rn of (λ1n − C)v⃗
!
= 0⃗),

(c) and discern whether the matrix C is diagonalisable or not (i.e., decide whether you

can choose eigenvectors v⃗1, . . . , v⃗n such that the matrix with these eigenvectors as

columns has non-zero determinant).

(Hint: you can find some worked examples in § 3.5 of the lecture notes.)

9.2. (Eigenvalues and eigenvectors, II)

Consider the matrix A∈ R2×2 and the vectors b⃗1, . . . , b⃗5 ∈ R
2 given below:

A=

�

11 −12

8 −9

�

, b⃗1 =

�

1

1

�

, b⃗2 =

�

0

0

�

, b⃗3 =

�

3

1

�

, b⃗4 =

�

3

2

�

, b⃗5 =

�

1

0

�

.

(a) For each vector b⃗ j ( j = 1, . . . , 5), check whether it is an eigenvector of A and, if it is,

determine the corresponding eigenvalue.

(b) Let Bi j ∈ R
2×2 denote the matrix with columns b⃗i and b⃗ j. Compute the matrix

Ci j := B−1
i j

ABi j

for all three pairs (i, j) ∈ {(1, 3), (1, 4), (3, 5)}.

9.3. (Systems of linear differential equations)

In this exercise, you should apply linear algebra to solve a system of linear differential



equations. More precisely, the goal is to find two differentiable functions x , y: R → R

such that for all t ∈ R

�

ẋ(t)

ẏ(t)

�

!
=

�

x(t) + 2y(t)

2x(t) + y(t)

�

=

�

1 2

2 1

��

x(t)

y(t)

�

, (†)

and

x(0)
!
= 1, y(0)

!
= 3. (‡)

(Here a dot above a function means the derivative with respect to t, that is, ẋ(t) = x ′(t).)

(a) Compute the eigenvalues and associated eigenvectors of the matrix A=

�

1 2

2 1

�

.

(b) Find an invertible matrix T ∈ R2×2 such that D = T−1AT is a diagonal matrix.

(c) Find differentiable functions u, v: R→ R such that, for all t ∈ R,

�

u̇(t)

v̇(t)

�

!
= D

�

u(t)

v(t)

�

.

(Hint: try t 7→ exp(λt) for suitable λ.)

(d) Verify that

�

x(t)

y(t)

�

:= T

�

u(t)

v(t)

�

satisfies (†).

(e) Replace your solutions u and v found in (c) with scalar multiples of themselves in

such a way that the solution to (†) constructed in (d) also satisfies (‡).

9.4. (Fourier series, I)

Consider the 1-periodic function f : R→ R, x 7→ 5+ 2 cos(2πx).

(a) Compute the Fourier coefficients

f̂ (k) =

∫ 1

0

f (x)e−2πikx dx .

of g for k ∈ Z.

(Hint: you should get f̂ (0) = 5, f̂ (±1) ̸= 0, and f̂ (k) = 0 for all other k.)

(b) Determine at which points f is represented by its Fourier series, i.e., for which x ∈ R

does

f (x) =

∞
∑

k=−∞

f̂ (k)e2πikx ?

(Hint: you can use Theorem 4.1, but in the present case, the infinite series will turn

out to be a finite sum, because almost all f̂ (k) are zero, as you will know from (a).

In this very special case, one can also argue using Theorem 1.3.)
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https://www.math.tugraz.at/~mtechnau/downloads/mamsengimath.pdf#thm.4.1
https://www.math.tugraz.at/~mtechnau/downloads/mamsengimath.pdf#thm.1.3

