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10.1. (Fourier series, I) (4 credits)

Let g: R → R be the 1-periodic function defined by g(x) = x + 1/2 for |x | < 1/2 and

g(1/2) = 1. (In particular, g(−1/2) = g(−1/2+ 1) = g(1/2) = 1.)
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(a) Compute the Fourier coefficients ĝ(k) of g for k ∈ Z. (Hint: ĝ(1) ≈ −0.159i,

ĝ(8)≈ 0.019894i. The solution can almost be found in § 4.3 of the lecture notes.)

ĝ(0) = and ĝ(k) = (for k ̸= 0).

(b) Determine at which points g is represented by its Fourier series, i.e., for which x ∈ R

does

g(x) =

∞∑

k=−∞

ĝ(k)e2πikx ? Answer: all x ∈ .

Please submit your solutions during the next lecture (18.01.2024).

https://www.math.tugraz.at/∼mtechnau/teaching/2023-w-mams.html

https://www.math.tugraz.at/~mtechnau/teaching/2023-w-mams.html


10.2. (Fourier series, II) (4 credits)

Let f : R→ R be the 1-periodic function defined by f (x) = (1− 2|x |)x for |x | ≤ 1/2.

−1.5 −1 −0.5 0.5 1 1.5

−0.2

0.2

(a) Compute the Fourier coefficients f̂ (k) of f for k ∈ Z. (Hint: this is an exercise in

partial integration and requires a bit of tenacity. You may use the following values

to verify the validity of your final result: f̂ (1)≈ −0.0645i, f̂ (−8) = 0= f̂ (42).)

f̂ (0) = and f̂ (k) = (for k ̸= 0).

(b) Determine at which points f is represented by its Fourier series, i.e., for which x ∈ R

does

f (x) =

∞∑

k=−∞

f̂ (k)e2πikx ? Answer: all x ∈ .

(c) Compute 1−
1

33
+

1

53
−

1

73
± . . .=

∞∑

n=0

(−1)n

(2n+ 1)3
= .

(Hint: approximations do not count. Use (b) together with a suitably chosen value

for x . At the end, you should arrive at a formula for the quantity in question that you

can comfortably enter into a calculator. The answer approximately equals 0.9689.)

10.3. (Fourier series, III) (4 credits)

Let h: R→ R be the 1-periodic function defined by h(x) = x4 − 2x3 + x2 for 0≤ x < 1:
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(a) Compute the Fourier coefficients ĥ(k) of h for k ∈ Z.

(Hint: depending on how you go about doing this, this requires partial integration

four times. You may check your final result using ĥ(0)≈ 0.033, ĥ(1)≈ −0.015399,

ĥ(1)≈ −0.015399, ĥ(−2)≈ −0.00096.)

ĥ(0) = and ĥ(k) = (for k ̸= 0).
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(b) Find complex numbers ak and bk such that

h(x) = ĥ(0) +

∞∑

k=1

(ak cos(2πkx) + bk sin(2πkx))

holds for all x ∈ R.

(Hint: exercise 3.2. Moreover, you can easily test your solution by replacing∞ in

the sum by 3 [the series in question converges rather quickly], plotting the resulting

sum on [0, 1] and comparing with a plot of h. They should look almost identical.)

ak = and bk = .

10.4. (Fourier series, IV) (4 credits)

Let v: R→ R be the 1-periodic function whose graph on [0, 1] is given as follows:
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Compute the Fourier coefficients v̂(k) of v for k ∈ Z.

v̂(0) = and v̂(k) = (for k ̸= 0).

(Hint: write v as a linear combination of functions whose Fourier coefficients you already

know from § 4.3 of the lecture notes. By doing so, you should be able to just write down

the correct answer without any computation.)
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