10. exercise sheet for Mathematics for Advanced Materials Science

(first name)

(student id number)
10.1. (Fourier series, I)
(4 credits)
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the 1-periodic function defined by $g(x)=x+1 / 2$ for $|x|<1 / 2$ and $g(1 / 2)=1$. (In particular, $g(-1 / 2)=g(-1 / 2+1)=g(1 / 2)=1$.)

(a) Compute the Fourier coefficients $\hat{g}(k)$ of g for $k \in \mathbb{Z}$. (Hint: $\hat{g}(1) \approx-0.159 i$, $\hat{g}(8) \approx 0.019894$ i. The solution can almost be found in § 4.3 of the lecture notes.)

$$
\hat{g}(0)=\square \text { and } \hat{g}(k)=\square \quad(\text { for } k \neq 0) .
$$

(b) Determine at which points g is represented by its Fourier series, i.e., for which $x \in \mathbb{R}$ does

$$
g(x)=\sum_{k=-\infty}^{\infty} \hat{g}(k) e^{2 \pi i k x} ? \quad \text { Answer: all } x \in
$$

\square
Please submit your solutions during the next lecture (18.01.2024).
https://www.math.tugraz.at/~mtechnau/teaching/2023-w-mams.html
10.2. (Fourier series, II)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the 1-periodic function defined by $f(x)=(1-2|x|) x$ for $|x| \leq 1 / 2$.

(a) Compute the Fourier coefficients $\hat{f}(k)$ of f for $k \in \mathbb{Z}$. (Hint: this is an exercise in partial integration and requires a bit of tenacity. You may use the following values to verify the validity of your final result: $\hat{f}(1) \approx-0.0645 i, \hat{f}(-8)=0=\hat{f}(42)$.)

$$
\hat{f}(0)=\square \text { and } \hat{f}(k)=\square \quad(\text { for } k \neq 0)
$$

(b) Determine at which points f is represented by its Fourier series, i.e., for which $x \in \mathbb{R}$ does

$$
f(x)=\sum_{k=-\infty}^{\infty} \hat{f}(k) e^{2 \pi \mathrm{i} k x} ? \quad \text { Answer: all } x \in
$$

\square
(c) Compute $1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}} \pm \ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}=$
(Hint: approximations do not count. Use (b) together with a suitably chosen value for x. At the end, you should arrive at a formula for the quantity in question that you can comfortably enter into a calculator. The answer approximately equals 0.9689 .)
10.3. (Fourier series, III)
(4 credits)
Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be the 1-periodic function defined by $h(x)=x^{4}-2 x^{3}+x^{2}$ for $0 \leq x<1$:

(a) Compute the Fourier coefficients $\hat{h}(k)$ of h for $k \in \mathbb{Z}$.
(Hint: depending on how you go about doing this, this requires partial integration four times. You may check your final result using $\hat{h}(0) \approx 0.033, \hat{h}(1) \approx-0.015399$, $\hat{h}(1) \approx-0.015399, \hat{h}(-2) \approx-0.00096$.)

(b) Find complex numbers a_{k} and b_{k} such that

$$
h(x)=\hat{h}(0)+\sum_{k=1}^{\infty}\left(a_{k} \cos (2 \pi k x)+b_{k} \sin (2 \pi k x)\right)
$$

holds for all $x \in \mathbb{R}$.
(Hint: exercise 3.2. Moreover, you can easily test your solution by replacing ∞ in the sum by 3 [the series in question converges rather quickly], plotting the resulting sum on $[0,1]$ and comparing with a plot of h. They should look almost identical.)

10.4. (Fourier series, $I V$)

Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be the 1-periodic function whose graph on $[0,1]$ is given as follows:

Compute the Fourier coefficients $\hat{v}(k)$ of v for $k \in \mathbb{Z}$.

$$
\hat{v}(0)=\square \text { and } \hat{v}(k)=\square \quad \text { (for } k \neq 0)
$$

(Hint: write v as a linear combination of functions whose Fourier coefficients you already know from § 4.3 of the lecture notes. By doing so, you should be able to just write down the correct answer without any computation.)

