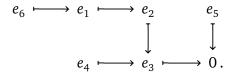


UNIVERSITÄT PADERBORN INSTITUT FÜR MATHEMATIK Marc Technau Charly Schwabe

6. Zusatzblatt zur Linearen Algebra 2

T6.1. (*Nilpotenz, I*)

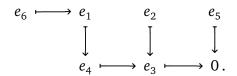
Gegeben sei die Matrix $N \in \mathbb{R}^{6\times 6}$, deren zugeordnete lineare Abbildung $\mathbb{R}^6 \to \mathbb{R}^6$, $v \mapsto Nv$, die Standardeinheitsvektoren e_1, \dots, e_6 wie folgt abbildet:



- (a) Bestimmen Sie N.
- (b) Bestimmen Sie N^i für i=2,3,4,... Für welches i_0 gilt erstmalig N^{i_0} = Nullmatrix? Wie hängt das mit dem obigen Abbildungsgraphen zusammen?
- (c) Bestimmen Sie eine Basis von $ker(N^i)$ für alle $i \in \mathbb{N}$.
- (d) Wählen Sie einen Vektor $b \in \ker(N^4) \setminus \ker(N^3)$ und verifizieren Sie dann:
 - 1. $ker(N^4) = ker(N^3) \oplus span\{b\};$
 - 2. Nb ist ein Element von $ker(N^3) \setminus ker(N^2)$;
 - 3. $ker(N^3) = ker(N^2) \oplus span\{Nb\};$
 - 4. N^2b ist ein Element von $ker(N^2) \setminus ker(N)$;
 - 5. $ker(N^2) = ker(N) \oplus span\{N^2b\};$
 - 6. N^3b ist ein Element von $ker(N) \setminus ker(N^0)$;
 - 7. $\ker(N^2) \supseteq \ker(N^0) \oplus \operatorname{span}\{N^3b\};$
- (e) Ergänzen Sie N^3b zu einer Basis (N^3b, b', b'') von ker N.
- (f) Sei S die Matrix mit den Spalten $(N^3b, N^2b, Nb, b, b', b'')$. Berechnen Sie $S^{-1}NS$.

T6.2. (Nilpotenz, II)

Gegeben sei die Matrix $N \in \mathbb{R}^{6 \times 6}$, deren zugeordnete lineare Abbildung $\mathbb{R}^6 \to \mathbb{R}^6$, $v \mapsto Nv$, die Standardeinheitsvektoren e_1, \dots, e_6 wie folgt abbildet:



Lösen Sie die Aufgaben aus Aufgabe T6.1 für dieses N. Sind dieses N und das N aus Aufgabe T6.1 ähnlich zueinander?

T6.3. (Hauptraumzerlegung)

Bestimmen Sie für die folgenden $n \times n$ Matrizen A über dem Körper K deren Eigenwerte λ und alle Haupträume

$$\operatorname{Hau}(A,\lambda) = \bigcup_{i \in \mathbb{N}} \ker((\lambda E_n - A)^i).$$

Prüfen Sie außerdem, ob

$$K^n = \bigoplus_{\lambda} \operatorname{Hau}(A, \lambda)$$

gilt.

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
, (b) $\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$, (c) $\begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$, (d) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$, (e) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathbb{C}^{2 \times 2}$, (f) $\begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$, (g) $\begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in \mathbb{C}^{4 \times 4}$.