

Universität Paderborn Institut für Mathematik Marc Technau Nicolas Potthast

1. Übung zur Algebra 1

1.1. (Fingerübungen)

(4 Punkte)

Es sei (G, \circ) eine Gruppe mit neutralem Element 1. Beweisen Sie die folgenden Aussagen:

- (a) Gilt $a \circ a = 1$ für alle $a \in G$, so ist G abelsch.
- (b) Ist $M = \{ a \in G : a \circ a \circ a = 1 \}$ endlich, so ist #M ungerade.
- **1.2.** (Schwache Gruppenaxiome)

(4 Punkte)

Es sei G eine Menge, \circ : $G \times G \to G$ eine zweistellige Verknüpfung und $1 \in G$ ein fixiertes Element. Ferner mögen die folgenden Eigenschaften gelten:

- $\begin{cases} (1) & \forall a, b, c \in G: \quad (a \circ b) \circ c = a \circ (b \circ c), \\ (2) & \forall a \in G: \quad a \circ 1 = a, \\ (3) & \forall a \in G \exists b \in G: a \circ b = 1. \end{cases}$
- (a) Zeigen Sie, dass G mit \circ eine Gruppe bildet.
- (b) Zeigen Sie, dass die Aussage aus Teil (a) i.Allg. nicht gültig bleibt, wenn man (3) durch die folgende Eigenschaft (3') ersetzt:
 - (3') $\forall a \in G \exists b \in G : b \circ a = 1.$
- **1.3.** (Ordnung von Elementen)

(4 Punkte)

Es sei $G = GL_2(\mathbb{R})$ die Gruppe der reellen, invertierbaren 2×2-Matrizen zusammen mit der bekannten Matrixmultiplikation als Verknüpfung. Betrachten Sie

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, sowie $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$.

Bestimmen Sie $\#\{X^n : n \in \mathbb{N}\}$ für alle $X \in \{A, B, AB\}$.

1.4. (Fingerübungen, II)

Es sei G eine endliche abelsche Gruppe. Es bezeichne $\pi = \prod_{g \in G} g$ das Produkt aller Elemente von G. (Auf die Reihenfolge der Faktoren kommt es hierbei nicht an, da G als abelsch vorausgesetzt wurde.) Zeigen Sie $\pi^2 = 1_G$.