

UNIVERSITÄT PADERBORN INSTITUT FÜR MATHEMATIK Marc Technau Nicolas Potthast

3. Präsenzblatt zur Algebra 1

T3.1. (Fingerübungen zu Normalteilern)

Sei *G* eine Gruppe. Beweisen Sie die folgenden Aussagen:

- (a) Wenn G abelsch ist, so ist jede Untergruppe U von G ein Normalteiler.
- (b) Wenn G endliche Ordnung hat und nur eine Untergruppe U mit Ordnung #U besitzt, so ist U ein Normalteiler.

T3.2. (Isomorphismus zyklischer Gruppen) Zeigen Sie, dass die Gruppen C_n und $\mathbb{Z}/n\mathbb{Z}$ (für ein festes $n \in \mathbb{N}$) isomorph sind.

T3.3. (Konjugation und innere Automorphismen)

Betrachten Sie eine Gruppe (G, \circ) . Für ein festes $h \in G$ definieren wir die Konjugationsabbildung $i_h : G \to G, g \mapsto h \circ g \circ h^{-1}$. Zudem definieren wir die Menge aller Konjugationsabbildungen von Elementen aus G als $Inn(G) := \{i_h : h \in G\}$. Zeigen Sie:

- (a) Die Abbildung i_h ist ein Gruppenisomorphismus, also ein Gruppenautomorphismus von G.
- (b) Die Menge Inn(G) ist ein Normalteiler von Aut(G). Man bezeichnet Inn(G) auch als Menge der inneren Automorphismen von G.
- (c) Es gilt genau dann $i_h = id_G$, wenn h mit allen $g \in G$ kommutiert.