



## Diskrete Stochastik und Informationstheorie Exercise sheet $10 - \frac{13}{6}/2013$

## Data compression and codes

**Exercise 40** (Relative entropy is the cost of miscoding) Let the rv X take values in  $\{1, 2, 3, 4, 5\}$ . Consider two possible distributions p and q of this rv X, as well as two binary encodings  $C_1$  and  $C_2$  of it:

| x | p(x)           | q(x)          | $C_1(x)$ | $C_2(x)$ |
|---|----------------|---------------|----------|----------|
| 1 | $\frac{1}{2}$  | $\frac{1}{2}$ | 0        | 0        |
| 2 | $\frac{1}{4}$  | $\frac{1}{8}$ | 10       | 100      |
| 3 | $\frac{1}{8}$  | $\frac{1}{8}$ | 110      | 101      |
| 4 | $\frac{1}{16}$ | $\frac{1}{8}$ | 1110     | 110      |
| 5 | $\frac{1}{16}$ | $\frac{1}{8}$ | 1111     | 111      |

- 1) Calculate H(p) and show that  $C_1$  is optimal for p. Same for q and  $C_2$ .
- 2) Calculate D(p||q) and quantify the loss when encoding with  $C_2$  under p. Same for D(q||p)and encoding with  $C_1$  under q.

**Exercise 41** Find the word lengths of an optimal binary encoding of  $p = (0.01, \ldots, 0.01)$ .

**Exercise 42** We consider the discrete channel  $Y = X + Z \mod 11$ , where  $X \in \mathcal{X} = \{0, 1, \dots, 10\}$  and Z is a random noise with

$$\mathbb{P}[Z=1]=\mathbb{P}[Z=2]=\mathbb{P}[Z=3]=\frac{1}{3}$$

such that Z and X are independent. Determine the capacity and the probability distribution on  $\mathcal{X}$  that maximizes I(X;Y).

**Exercise 43** Let  $\mathcal{X} = \mathcal{Y} = \{0, 1\}$ . The transition probabilities are given by :

$$p(0|0) = 1, \ p(1|0) = 0, \ p(0|1) = p(1|1) = \frac{1}{2}.$$

Determine the capacity and the probability distribution that maximizes I(X;Y).