

Diskrete Stochastik und Informationstheorie Exercise sheet 2 - 21/3/2013

Random variables

Exercise 7 Let $X \sim Unif(\{1,2\})$ and $Y \sim Bin(2,1/2)$, and X and Y independent.

- a) Describe the distribution of Z = X + Y and its σ -algebra. It suffices to enumerate the atoms (subsets of $\{1,2\} \times \{0,1,2\}$) generating the σ -algebra.
- b) Same for W = Y 2X.

Exercise 8 The joint distribution of the vector (X, Y) is given by the following matrix:

(i, j)	-1	2	3
0	0.03	0.16	0.12
1	0.07	0.35	0.27

For example, $\mathbb{P}((X, Y) = (0, -1)) = 0.03$.

- a) Calculate the marginal distributions of X and Y.
- b) Are X and Y independent?

Exercise 9 Let X, Y be two independent, dice-valued (that means $Unif(\{1, \ldots, 6\})$) rvs.

- a) Calculate $\mathbb{E}[2X + Y^2]$.
- b) Calculate the covariance $Cov(X, Y) := \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])].$
- c) Are X + Y and X Y independent?
- d) Calculate the covariance of (X + Y) and (X Y).

Exercise 10 Let X be a geometric distributed random variable on \mathbb{N} , i.e., $\mathbb{P}(X = k) = (1 - p)^{k-1}p$ for some $p \in [0, 1]$. Define the sequence of rvs $(X_n)_{n>0}$ by

$$X_n := \begin{cases} (1-p)^{1-n} & \text{if } X = n \\ 0 & \text{otherwise.} \end{cases}$$

- a) Does (X_n) converge in probability?
- b) What can you say about the almost sure limit of X_n ?
- c) Can you interchange limit and expectation?