

Diskrete Stochastik und Informationstheorie Exercise sheet 5 - 9/5/2013

Entropy rate of stochastic processes

Exercise 21 Consider the Markov chain $(X_n)_{n\geq 0}$ on $\mathcal{X} = \{1, \ldots, 7\}$ with transition matrix

	1	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0 \
		0	0	$\frac{\overline{1}}{3}$	$\frac{\overline{1}}{3}$	0	0	$\frac{1}{3}$
		0	θ	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$
$\mathbf{P} =$		0	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$
		$\frac{1}{2}$	0	0	0	0	$\frac{1}{2}$	0
		0	0	0	0	0	0	1
	(0	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$ /

- 1) Is X_n irreducible?
- 2) Give a stationary distribution for X_n ? Is the latter unique?
- 3) Calculate $\mathbb{P}(X_n = i | X_0 = 6)$ for $i \in E$ and $n \in \{1, 2, 3\}$
- 4) Calculate $\lim_{n\to\infty} \mathbb{P}(X_n = i | X_0 = 6)$ for all $i \in E$.

Exercise 22 Consider all simple random walks (nearest-neighbour, equal probability to go to each neighbour) on (undirected) graphs of 4 vertices.

- 1) Which random walk (graph) has the highest, respectively lowest entropy?
- 2) What happens, if we restrict ourselves to connected graphs?
- 3) What happens if we allow loops (that is staying at the vertex is an option, too)?

Exercise 23 Let $(X_n)_{n \in \mathbb{N}}$ be an irreducible Markov chain on the countable state space \mathcal{X} with transition matrix P and stationary distribution ν . Form the associated transition process $(Y_n)_{n \in \mathbb{N}}$, which encodes the transitions effectuated by X, i.e. $Y_n = (X_n, X_{n+1})$:

$$X(\omega) = (1, 3, 4, 5, 2, 4, \dots) \quad \Rightarrow \quad Y(\omega) = ((1, 3), (3, 4), (4, 5), (5, 2), (2, 4), \dots).$$

- 1) Show that Y is an irreducible Markov chain on \mathcal{X}^2 and state its transition matrix.
- 2) Calculate its invariant distribution.
- 3) Calculate its entropy.

Exercise 24 Show, for a Markov chain, that

$$H(X_0|X_n) \ge H(X_0|X_{n-1}).$$