



Diskrete Stochastik und Informationstheorie Exercise sheet 7 - 23/5/2013

Entropy rate and AEP

Exercise 29 Let X_1, X_2, \ldots be *i.i.d.* random variables with distribution given by $p(x), x \in \{1, \ldots, m\}$. Let $q(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n q(x_i)$, where q is a probability function on $\{1, 2, \ldots, m\}$ different of p.

- 1) Evaluate $\lim_{n\to\infty} \frac{1}{n} \log q(X_1, X_2, \dots, X_n)$.
- 2) What is the limit of the log likelihood ratio $\frac{1}{n} \log \frac{q(X_1, X_2, ..., X_n)}{p(X_1, X_2, ..., X_n)}$? Interpret the result.

Exercise 30 A discrete source emits a sequence of binary bits that follow a stationary Markov chain. The Markov chain is described by the transition matrix

$$P = \left(\begin{array}{cc} 0.9 & 0.1\\ 0.5 & 0.5 \end{array}\right)$$

- 1) Calculate the entropy rate of X_n .
- 2) How many 1's will you typically observe in a sequence of 100 digits.
- 3) Give bounds on the size of the typical sets.
- 4) Use Markov's inequality to bound the probability of observing a source sequence that contains more than k 1's. Let $\epsilon = 0.001$ and use the above bound to find the value k such that the probability of observing more than k times a 1 is less than ϵ .

Exercise 31 (ruin problem) Imagine you play black jack with a friend and you win $1 \in$ with probability one half and you loose $1 \in$ with probability one half. At the beginning you have $n \in$ and your friend has $m \in$. You play until the first player is broke.

- 1) Formulate a Markov chain that models the game.
- 2) Calculate the probability that you win. (You may consider the expectation of your money during the game.)
- 3) Comment on the statement "Never play again somebody who is richer".