

Diskrete Stochastik und Informationstheorie Exercise sheet $8 - \frac{30}{5}/2013$

Data compression

Exercise 32 Let $\mathcal{X} = \{a, b, c, d\}$. The elements of \mathcal{X} are encoded as follows:

$$C(a) = 10$$
, $C(b) = 00$, $C(c) = 11$, $C(d) = 110$.

Check if the code C is nonsingular resp. instantaneous (prefix code).

Exercise 33 Let $\mathcal{X} = \{a, b, c, d, e\}$. Construct a prefix code $C : \mathcal{X} \to \{0, 1\}^*$, so that

 $l(C(a)) = 1, \quad l(C(b)) = 3, \quad l(C(c)) = 4, \quad l(C(d)) = 4, \quad l(C(e)) = 5 \,.$

Exercise 34 An instantaneous code has word lengths l_1, \ldots, l_m , which satisfy the strict inequality

$$\sum_{i=1}^m D^{-l_i} < 1.$$

The code alphabet is $\mathcal{D} = \{0, \ldots, D-1\}$. Show that there exist arbitrarily long sequences of code symbols in \mathcal{D}^* which can not be decoded into sequences of codewords.

Exercise 35 The source coding theorem shows that the optimal code for a rv X has an expected length less than H(X)+1. Give an example of a rv for which the expected length of the optimal code is close to H(X) + 1. That is, construct for every $\varepsilon > 0$ a rv X_{ε} for which the optimal code fulfills $L_{\varepsilon} > H(X_{\varepsilon}) + 1 - \varepsilon$.