



Diskrete Stochastik und Informationstheorie Exercise sheet 9 - 6/6/2013

Data compression

Exercise 36 Find a binary Huffman-Code of the distribution $(\frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \frac{2}{15}, \frac{2}{15})$. Argue that this code is also optimal for the distribution $(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$.

Exercise 37 Which of the following codes can not arise as Huffman-Codes?

- a) $\{01, 10\}$
- $b) \{0, 10, 11\}$
- c) $\{00, 01, 10, 110\}$

Exercise 38 Let $\mathcal{X} = \{a, b, c, d, e, f, g, h, i\}$. The elements of \mathcal{X} appear independently with the following probabilities:

Find the Huffman-Code and the expected code length of a letter in the

- 1) binary case,
- 2) ternary case.

Exercise 39 Consider the homogeneous Markov chain $X = (X_n)_{n \in \mathbb{N}}$ on the state space $S = \{s_1, s_2, s_3\}$ with transition matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} .$$

- 1) Design three binary encodings C_1, C_2 and C_3 of S such that the Markov process X can be sent with maximal compression by the following algorithm:
 - Note the current symbol $X_n = s_i$.
 - Select code C_i .
 - Note the next symbol $X_{n+1} = s_j$ and sent the codeword in C_i corresponding to s_j .
 - Repeat for the next symbol.
- 2) What is the average message length of the next symbol conditioned on $X_n = s_i$?
- 3) What is the unconditional average number of bits per source symbol? Relate this to the entropy of the Markov chain.