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Data compression

Exercise 36 Find a binary Huffman-Code of the distribution (13 ,
1
5 ,

1
5 ,

2
15 ,

2
15). Argue that this

code is also optimal for the distribution (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5).

Exercise 37 Which of the following codes can not arise as Huffman-Codes?

a) {01, 10}

b) {0, 10, 11}

c) {00, 01, 10, 110}

Exercise 38 Let X = {a, b, c, d, e, f, g, h, i}. The elements of X appear independently with the
following probabilities:

x a b c d e f g h i

p(x) 0.3 0.2 0.15 0.1 0.05 0.05 0.08 0.04 0.03

Find the Huffman-Code and the expected code length of a letter in the

1) binary case,

2) ternary case.

Exercise 39 Consider the homogeneous Markov chain X = (Xn)n∈N on the state space S =
{s1, s2, s3} with transition matrix

P =
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1
4
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4
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2

1
2

 .

1) Design three binary encodings C1, C2 and C3 of S such that the Markov process X can
be sent with maximal compression by the following algorithm:

– Note the current symbol Xn = si.

– Select code Ci.

– Note the next symbol Xn+1 = sj and sent the codeword in Ci corresponding to sj.

– Repeat for the next symbol.

2) What is the average message length of the next symbol conditioned on Xn = si?

3) What is the unconditional average number of bits per source symbol? Relate this to the
entropy of the Markov chain.


