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Abstract

In this short note the neighbourhood graph of a Cayley graph is consid-
ered. It has as nodes a symmetric generating set of a finitely-generated
group Γ. Two nodes are connected by an edge if one is obtained from
the other by multiplication on the right by one of the generators. Two
necessary conditions on the graphs are shown. One is a condition on the
degrees of the graph, the other concerns complete subgraphs.

1. Introduction

Let Γ be a finitely-generated group. A symmetric generating set of Γ is a subset
S of Γ with 1 /∈ S and s−1 ∈ S for all s ∈ S such that S generates the group Γ.

The Cayley graph of Γ with respect to S is the graph which has as vertices
the elements of Γ and as edges (γ, γs) where γ ∈ Γ and s ∈ S, see for example
[1] or [3].

The induced subgraph of a graph on a subset of the vertices is the subgraph
with all edges of the graph with both endpoints in the subset.

The neighbourhood graph of a vertex is the induced subgraph on the neighbours
of this vertex. For graphs with given neighbourhoods see [4].

Let now S be a finite symmetric generating set of a finitely-generated group Γ.
The neighbourhood graph (S,K) of 1 ∈ Γ of the Cayley graph of Γ with respect
to S with edges K will be investigated. One motivation for considering these
graphs is provided by a theorem of Żuk stating that the group Γ has Kazhdan’s
property T if the graph is connected and the smallest positive eigenvalue λ of a
certain Laplacian on the graph (S,K) is strictly greater than 1/2, see [6].

Here the problem is considered of which finite connected graphs can occur
in this way as the neighbourhood graph of a Cayley graph for some finitely-
generated group. Two necessary conditions are given. The first is a condition on
∗Supported by grant 20-65060.01 of the Swiss National Fund for Scientific Research
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the degrees N (s) = |{t ∈ S : (s, t) ∈ K}| of the graph. It says that the number
of nodes with a given odd number of neighbours is always even.

Theorem 1.1: If n ≡ 1 mod 2 then |N−1 ({n})| ≡ 0 mod 2.

Note that this is certainly stronger than the general fact that
∑

s∈S N (s) =
|K| ≡ 0 mod 2.

The theorem excludes for example all of the following graphs from considera-
tion.
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Graphs not fulfilling the degree condition for n = 1

The second condition sets up a correspondence between complete subgraphs
and finite subgroups of Γ contained in S ∪ {1}. Clearly a subgroup contained in
S ∪ {1} induces a complete subgraph of (S,K). But also the following holds.

Theorem 1.2: Let S be a finite symmetric generating set of Γ, cr the number
of complete subgraphs with r nodes, and ur the number of subgroups of order
r+1 of Γ contained in S∪{1}. Then cr = ur +

∑m
j=1 pjkj for some kj ≥ 0 where

p1, . . . , pm are the distinct primes dividing r + 1.

The cases r = 1 or 2 yield the following observations: For r = 1 the theorem
implies the obvious fact that the number u1 of elements of order 2 is ≡ c1 mod 2,
where c1 = |S|. When r = 2 the number of elements of order 3 is equal to 2u2,
and c2 = |K| /2, and the theorem implies c2 = u2 + 3k1, hence we obtain the
following.

Corollary 1.3: If n is the number of elements of order 3 in S, then |K| ≡
nmod 6.

This excludes for example the graph with 3 nodes and 2 edges because in
that case |K| = 4 while n ≤ |S| = 3. More examples like this are provided in
Section 2.

The appendix contains a list of all graphs with ≤ 5 nodes and the associated
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groups and generating sets. Theorems 1.1 and 1.2 were used to exclude certain
graphs which have no such description.

None of the infinite groups which appear in our list has Kazhdan’s property T.
So if there exists a generating set of an infinite finitely-generated group with
Kazhdan’s property T such that the theorem of Żuk can be applied it must have
a set with ≥ 6 generators forming a connected graph.

The smallest known graph of a generating set of an infinite finitely-generated
group for which the theorem of Żuk establishes property T has 14 nodes. It is
associated with a so-called Ã2-group, see [2] and [6]. The graph of generators is
the incidence graph of points and lines of a projective plane over a finite field
with two elements.

It is a pleasure to thank M. B. Bekka, P. de la Harpe, H. Führ, and G. Schlicht-
ing for their comments and suggestions, and the referee for suggestions, remarks,
and the reference [4]. Partial financial support from the Centre de Coopération
Universitaire Franco-Bavarois is acknowledged.

2. Consequences of Theorem 1.2

Starting with a given graph, the subgroups contained in S ∪ {1} are not known
if the graph is presumed to be associated with a group with a generating set
S, however the last theorem gives lower bounds for the number of subgroups of
order r + 1 contained in S ∪ {1}.

Corollary 2.1: Let S be a generating set of a group Γ, cr the number of
complete subgraphs of (S,K) with r nodes, and let vr be the smallest non-negative
integer expressible in the form cr −

∑m
j=1 pjkj where p1, . . . , pm are the distinct

primes dividing r + 1, and k1, . . . , km are non-negative integers. Then there are
at least vr subgroups of order r + 1 of Γ contained in S ∪ {1}.

In this way the minimum possible number of subgroups is determined from
the complete subgraphs which must be contained in S ∪ {1}. If U1 6= U2 are two
subgroups contained in S ∪ {1} then |U1 ∩ U2| is a proper divisor of at least one
of |U1| and |U2|. Let d (u, v) = gcd (u, v) if u 6= v and d (u, v) = u/p where p is
the smallest prime dividing u if u = v. Then |U1 ∩ U2| ≤ d (|U1| , |U2|).

Proposition 2.2: Let S be a symmetric generating set of a group Γ such that
S∪{1} contains pairwise distinct finite subgroups U1, . . . , Un of Γ of order |Uk| ≥
2 for all 1 ≤ k ≤ n, then

|S| ≥
n∑
k=1

|Uk|+
n (n− 3)

2
−

n∑
j=2

j−1∑
k=1

d (|Uj| , |Uk|) .

This is easy to prove by induction using the fact |S| ≥ |
⋃n
k=1 Uk| − 1.



M. Neuhauser: Neighbourhood graphs of Cayley graphs 4

The proposition is also true with d (|Uj| , |Uk|) replaced by |Uj ∩ Uk|. This
quantity, however, is usually not known for a given graph. The corollary gives
only the orders of Uk for k = 1, . . . , n, where n =

∑m
r=1 vr.

Also note that the proposition is already true for n = 1 interpreting the second
sum as 0.

Together with the last corollary the proposition helps to exclude certain graphs
which cannot be associated with generating sets of groups, such as the following.
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Graphs not fulfilling the subgroup condition

Take for example the first graph in the second column. In this case c1 = 4,
c2 = 4, c3 = 1, and c4 = 0. This yields v1 = 0, v2 = 1, v3 = 1, v4 = 0, and n = 2
but |S| = 4 < 5 = (3 + 4) − 1 − d (3, 4) which contradicts the proposition. The
other examples were obtained by similar reasoning.

3. Proof of Theorems 1.1 and 1.2

Let S be a symmetric generating set of a finitely-generated group Γ. To prove
Theorem 1.1 the mapping Φ : s 7→ s−1 of S to itself is employed. Note that
N (s−1) = N (s) because (s, t) ∈ K if and only if (s−1, s−1t) ∈ K. So the mapping
t 7→ s−1t from the neighbours of s to the neighbours of s−1 is one-to-one. For
elements of order 2 even the following holds.

Lemma 3.1: If s ∈ S has order 2, then the number of neighbours of s is even.

Proof: As s has order 2, for the edges (s, t) ∈ K if and only if (s, st) ∈ K. So
the mapping t 7→ st maps neighbours of s to themselves. Also st 6= t for every
neighbour t; otherwise s = 1 /∈ S. So the neighbours of s come in disjoint pairs
{t, st}, and this shows that N (s) ≡ 0 mod 2. 2

Now Theorem 1.1 can be proven.

Proof: Let n ≡ 1 mod 2, then the mapping Φ maps N−1 ({n}) to itself. By the
last lemma N−1 ({n}) contains no element of order 2. So there is a disjoint par-
tition of N−1 ({n}) into pairs {s, s−1} and again this shows that |N−1 ({n})| ≡
0 mod 2. 2
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Now Theorem 1.2 will be proven.

Proof: Let M be the set of all sets of r nodes which form complete subgraphs
and M1 = {C ∪ {1} : C ∈M},

A = {(s1, . . . , sr) : {s1, . . . , sr} ∈M} ,

A1 = {(s1, . . . , sr+1) : {s1, . . . , sr+1} ∈M1} .

Then the symmetric group Sr+1 acts on A1 by

σ (s1, . . . , sr+1) =
(
sσ(1), . . . , sσ(r+1)

)
.

Let the mapping P : A1 → A be defined by

P (s1, . . . , sr+1) =
(
s−1
r+1s1, . . . , s

−1
r+1sr

)
.

Note that P is surjective. Also via the mapping P , the symmetric group Sr+1

acts on A by
σ (P (s1, . . . , sr+1)) = P (σ (s1, . . . , sr+1))

for σ ∈ Sr+1. This is well-defined. Indeed, if P (s1, . . . , sr+1) = P (t1, . . . , tr+1),
then

P (σ (s1, . . . , sr, sr+1))

=
(
s−1
σ(r+1)sσ(1), . . . , s

−1
σ(r+1)sσ(r)

)
=

((
s−1
r+1sσ(r+1)

)−1
s−1
r+1sσ(1), . . . ,

(
s−1
r+1sσ(r+1)

)−1
s−1
r+1sσ(r)

)
=

((
t−1
r+1tσ(r+1)

)−1
t−1
r+1tσ(1), . . . ,

(
t−1
r+1tσ(r+1)

)−1
t−1
r+1tσ(r)

)
= P (σ (t1, . . . , tr, tr+1)) .

Considering Sr as a subgroup of Sr+1 fixing the point r + 1, we see

P (σ (s1, . . . , sr+1)) =
(
s−1
r+1sσ(1), . . . , s

−1
r+1sσ(r)

)
6= P (s1, . . . , sr+1)

for σ ∈ Sr \{1}. Let Sr act on the orbit Sr+1V for V ∈ A. The above shows that
every orbit of the Sr-action has length r! and hence r! is a divisor of |Sr+1V |.

Let B ⊂ A be a set of representatives such that A =
⋃
V ∈B Sr+1V is a disjoint

decomposition into orbits. Then r!cr = |A| =
∑

V ∈B |Sr+1V |. If |Sr+1V | 6= r!
then since |Sr+1V | divides (r + 1)!, there exists a prime pj dividing r + 1 such
that r!pj divides |Sr+1V |. If V = (s1, . . . , sr) and |Sr+1V | = r!, then the set
U = {1, s1, . . . , sr} is a subgroup of order r + 1 as s−1t ∈ U for all s, t ∈ U .
Hence cr = ur +

∑m
j=1 pjkj for some kj ≥ 0. 2
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A. Appendix

With the help of the two conditions given by Theorems 1.1 and 1.2 the following
complete list of graphs with ≤ 5 nodes together with the associated groups and
generating sets was determined. For the graphs not excluded by the preceding
theorems a combinatorial case-by-case analysis as below for the remaining graphs
excluded some of the rest of the graphs with≤ 5 nodes. For the others this yielded
groups whose generating set is associated with the given graph.

The groups are given in terms of generators and relations. The group Γ =
〈s1, . . . , sn : r1, . . . , rm〉 is the factor group of the free group with generators
s1, . . . , sn by the normal subgroup generated by the elements r1, . . . , rm of the
free group. Note that each given group Γ is universal in the sense that it is the
largest possible group of its type associated with the given graph, and every
other group of the same type corresponding to the given graph is a factor group
of Γ.

Obviously every complete graph is contained in the list; indeed, for any finite
group Γ we may take S = Γ \ {1}. On 4 nodes, the graphs not excluded by the
conditions above are the following:
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In the first case s3 = s−1
2 by Lemma 3.1. As |K| = 10 there are n = 4

elements of order 3 by Corollary 1.3 and so s4 = s−1
1 . But then (s1, s4) ∈ K since

s−1
1 s4 = s2

4 = s1 ∈ S, a contradiction.
In the second case |K| = 8 so by Corollary 1.3 there are two elements of order 3,

say s and s−1, and these must be adjacent as s−1s−1 = s ∈ S. Without loss of
generality s2 = s and s4 = s−1, and as (s4, s3) ∈ K, we have ss3 = s−1

4 s3 ∈ S.
The only possibility is ss3 = s1. If s1 has order 2 then so does s3 and we have the
dihedral group D3 of order 6, and otherwise s3 = s−1

1 and then s = s1s
−1
3 = s2

1

so Γ = 〈S〉 = 〈s1〉 must be cyclic of order 6.
In the third case s4 = s−1

1 . Since |K| = 6 there are no elements of order 3.
Also either s−1

3 = s2 and s−1
3 s2 = s1, or s−1

3 = s3 and s−1
3 s2 = s4. The other

possibilities lead to contradictions. The first possibility yields s1 = s2
2 and so

Γ = 〈S〉 = 〈s2〉 ∼= Z. The second possibility yields Γ = 〈S〉 = 〈s2, s3〉 ∼= D∞.
Proofs of this classification for the remaining graphs with 5 nodes and less

than 6 edges by similar (but more involved) reasoning can be found in [5].
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Group Graph
Γ = 〈x : x3〉 ∼= Z/3Z
S = {x±1} r rx x−1

Γ = 〈x : x4〉 ∼= Z/4Z
S = {x±1, x2} r r
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Γ =
〈
x, y : x2, y2, (xy)2〉 ∼= D2

∼= 〈x : x2〉 × 〈y : y2〉
∼= (Z/2Z)× (Z/2Z)

S = {x, y, xy}
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Γ = 〈x : x6〉 ∼= Z/6Z
S = {x±1, x±2} r r
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Γ =
〈
x, y : x2, y2, (xy)3〉 ∼= D3

S = {x, y, xy, yx} r r
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Group Graph
Γ = 〈x〉 ∼= Z
S = {x±1, x±2} r r r rx2 x x−1 x−2

Γ = 〈x, y : x2, y2〉 ∼= D∞,
S = {x, y, xy, yx} r r r rxy x y yx

Γ = 〈x : x6〉 ∼= Z/6Z
S = {x±1, x±2, x3} r r
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Γ = 〈x, y : x2, y2〉 ∼= D∞
S = {x, y, xy, yx, xyx} r
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Γ =
〈
x, y, z : x2, y2, z2, (zx)2 , (zy)2〉

∼= 〈x, y : x2, y2〉 × 〈z : z2〉
∼= D∞ × (Z/2Z)

S = {x, y, z, zx, zy} r
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Γ =
〈
x, y : x4, y2, (yx2)

2
〉

S = {x±1, x2, y, yx2} r
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Group Graph

Γ = 〈x, y : x4, y4, x2y2〉
S = {x±1, y±1, x2} r
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Γ = 〈x, z : z2, zxzx−1〉
∼= 〈x〉 × 〈z : z2〉
∼= Z× (Z/2Z)

S = {x±1, z, zx, zx−1} r
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Γ = 〈x, z : x3, z2〉 ∼= PSL (2,Z)
S = {x±1, z, xz, zx−1} r r r r rxz x x−1 z zx−1

Γ =
〈
x, z : x3, z2, (xz)3〉

∼= PSL (2,Z/3Z)
S = {x±1, z, xz, zx−1} r r

r r r
�
�

@
@

xz

zx−1

x

z

x−1

Γ = 〈x : x8〉 ∼= Z/8Z
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〈
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